Advertisement

An Investigation into the Influence of Filler Piper nigrum Leaves Extract on Physicochemical and Antimicrobial Properties of Chitosan/Poly (Vinyl Alcohol) Blend Films

  • Deepak Kasai
  • Ravindra ChougaleEmail author
  • Saraswati Masti
  • Raju Chalannavar
  • Ravindra B. Malabadi
  • Ramesh Gani
  • Gangadhar Gouripur
Original Paper
  • 40 Downloads

Abstract

The influence of Piper nigrum (P. nigrum) leaves extract on structural and physicochemical properties of chitosan/poly (vinyl alcohol) (CH/PVA) blend films were studied. The hypothesis of the study was confirmed by using UTM, SEM, AFM, TGA, DSC, XRD, and FTIR studies. Interestingly, increased mechanical properties were observed with inclusion of P. nigrum leaves extract to the CH/PVA blend films. SEM micrographs revealed that there is a smooth homogeneous phase morphology with better compatibility. The results of X-ray diffraction study confirmed that influence of crystallinity on mechanical properties of the blend films. Further, the results of TGA witnessed that addition of P. nigrum leaves extract did not influence much on thermal stability of the CH/PVA blend films. The presence of a single glass transition temperature (Tg) indicated that complete miscibility among the blend components. The result of FTIR study confirmed the presence of a significant interaction among the chitosan, PVA and P. nigrum leaves extract. The water contact angle measurement and the antimicrobial study revealed that CH/PVA/P. nigrum leaves extract blend films showed decreased hydrophobicity and enhanced antimicrobial activity. Hence, this partly stimulated research data obtained from the study might be an advantage for new packaging material preparations in the future.

Keywords

Mechanical properties Morphology Crystallinity Glass transition temperature 

Notes

Acknowledgements

The authors would like to express their gratitude to the Department of Materials Science, Department of Science and Technology - Promotion of University Research and Scientific Excellence (DST-PURSE) Laboratory Mangalore University, for providing instrumental facility to smooth conduction of research work.

References

  1. 1.
    Avella M, Vlieger J, Errico EM, Fischer S, Vacca P, Volpe GM (2005) Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem 93:467CrossRefGoogle Scholar
  2. 2.
    Jolanta W-K, Tomasz R, Gabrie B, Mieczysław S, Tomasz K, Thakur VK (2018) Recent progress in biodegradable polymers and nanocomposites based packaging materials for sustainable environment. Int J Polym Anal Charact 23:383CrossRefGoogle Scholar
  3. 3.
    Averous L, Pollet E (2012) Green energy technology. Springer, LondonGoogle Scholar
  4. 4.
    Madhumitha G, Fowsiya J, Mohana RS, Vijay Kumar T (2018) Recent advances in starch-clay nanocomposites. Int J Polym Anal Charact 23(4):331CrossRefGoogle Scholar
  5. 5.
    Khwaldia K, Arab-Tehrany E, Desobry S (2010) Compr Rev Food Sci Food Saf 9:82CrossRefGoogle Scholar
  6. 6.
    Rotta J, Minatti E, Barreto PLM (2011) Determination of structural and mechanical properties, diffractometry, and thermal analysis of chitosan and hydroxypropylmethylcellulose (HPMC) films plasticized with sorbitol. Food Sci Technol 31:450CrossRefGoogle Scholar
  7. 7.
    Yang L, Paulson AT (2000) Mechanical and water vapour barrier properties of edible gellan films. Food Res Int 33:563CrossRefGoogle Scholar
  8. 8.
    Fernandes JC, Tavaria FK, Soares JC, Ramos OS, Monteiro MJ, Pintado ME (2009) Antimicrobial effects of chitosans and chitooligosaccharides, upon Staphylococcus aureus and Escherichia coli, in food model systems. Food Microbiol 25:922CrossRefGoogle Scholar
  9. 9.
    Yen MT, Yang JH, Mau JL (2009) Poly (ethyl acrylate) surface-initiated ATRP grafting from wood pulp cellulose fibers. Carbohydr Polym 75:15CrossRefGoogle Scholar
  10. 10.
    Cuero RG (1999) Antimicrobial action of exogenous chitosan. EXS 87:315PubMedGoogle Scholar
  11. 11.
    Thakur VK, Voicu SI (2016) Recent advances in cellulose and chitosan based membranes for water purification: a concise review. Carbohydr Polymer 1:148CrossRefGoogle Scholar
  12. 12.
    Chung YC, Su YP, Chen CC, Jia G, Wang HL, Wu JG, Lin JG (2004) Relationship between antibacterial activity of chitosan and surface characteristics of cell wall. J Acta Pharmacol Sin 25:932Google Scholar
  13. 13.
    Shahidi F, Abuzaytoun AR (1964) Chitin, chitosan and coproduce: chemistry, production applications, and health effects. Adv Food Nutr Res 49:94Google Scholar
  14. 14.
    Ralston GB, Tracey MV, Wrench PM (1964) The inhibition of fermentation in baker’s yeast by chitosan. Biochim Biophys Acta 93:652PubMedCrossRefGoogle Scholar
  15. 15.
    Qin C, Du Y, Xiao L, Li Z, Gao X (2002) Enzymic preparation of water-soluble chitosan and their antitumor activity. Int J Biol Macromol 31:111PubMedCrossRefGoogle Scholar
  16. 16.
    No HK, Park NY, Lee SH (2002) Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int J Food Microbiol 74:65PubMedCrossRefGoogle Scholar
  17. 17.
    Tomida H, Fujii T, Furutani N, Michihara A, Yasufuku T, Akasaki K, Maruyama T, Otagiri M, Gebicki JM, Anraku M (2009) Antioxidant properties of some different molecular weight chitosans. Carbohydr Res 344:1690PubMedCrossRefGoogle Scholar
  18. 18.
    Chien PJ, Sheu F, Huang WT, Su MS (2007) Effect of molecular weight of chitosans on their antioxidative activities in apple juice. Food Chem 102:1192CrossRefGoogle Scholar
  19. 19.
    Kim KW, Thomas RL (2007) Antioxidative activity of chitosans with varying molecular weights. Food Chem 101:308CrossRefGoogle Scholar
  20. 20.
    Park PJ, Je JY, Kim SK (2004) Free radical scavenging activities of differently deacetylated chitosans using an ESR spectrometer. Carbohydr Polym 55:17CrossRefGoogle Scholar
  21. 21.
    Kim EK, Je JY, Lee SJ, Kim YS, Hwang JW, Sung SH, Moon SH, Jeon BT, Kim SK, Jeon YJ, Park PJ (2012) Chitooligosaccharides induce apoptosis in human myeloid leukemia HL-60 cells. Bioorg Med Chem Lett 22:6136PubMedCrossRefGoogle Scholar
  22. 22.
    Je JY, Park PJ, Kim B, Kim SK (2006) Antihypertensive activity of chitin derivatives. Biopolymers 83:250PubMedCrossRefGoogle Scholar
  23. 23.
    Suzuki K, Mikami T, Okawa Y, Tokoro A, Suzuki S, Suzuki M (1986) Antitumor effect of hexa-N-acetylchitohexaose and chitohexaose. Carbohydr Res 151:403PubMedCrossRefGoogle Scholar
  24. 24.
    Cho YS, Lee SH, Kim SK, Ahn CB, Je JY (2011) Aminoethyl-chitosan inhibits LPS-induced inflammatory mediators, iNOS and COX-2 expression in RAW264.7 mouse macrophages. Process Biochem 46:465CrossRefGoogle Scholar
  25. 25.
    Zhang Q, Liu L, Ren L, Wang F (1997) Preparation and characterization of collagen-chitosan composites. J Appl Polym Sci 64:2127CrossRefGoogle Scholar
  26. 26.
    Hasegawa M, Isogai A, Onabe F, Usuda M (1992) Dissolving states of cellulose and chitosan in trifluoroacetic acid. J Appl Polym Sci 45:1857CrossRefGoogle Scholar
  27. 27.
    Hasegawa M, Isogai A, Onabe F, Usuda M, Atalla RJ (1992) Characterization of cellulose–chitosan blend films. J Appl Polym Sci 45:1873CrossRefGoogle Scholar
  28. 28.
    Hasegawa M, Isogai A, Kuga S, Onabe F (1994) Preparation of cellulose-chitosan blend film using chloral/dimethylformamide. Polymer 35:983CrossRefGoogle Scholar
  29. 29.
    Wong DWS, Gastineau FA, Gregorski KS, Tillin SJ, Pavlath AE (1992) Chitosan-lipid films: microstructure and surface energy. J Agric Food Chem 40:540CrossRefGoogle Scholar
  30. 30.
    Butler BL, Vergano PJ, Testin RF, Bunn JM, Wiles JL (1996) Mechanical and barrier properties of edible chitosan films as affected by composition and storage. J Food Sci 61:953CrossRefGoogle Scholar
  31. 31.
    Furda I, Brine CJ (1990) New developments in dietary fiber. Plenum, New YorkCrossRefGoogle Scholar
  32. 32.
    Thakur VK, Thakur MK (2014) Recent advances in graft copolymerization and applications of chitosan: a review. ACS Sustain Chem Eng 2:2637CrossRefGoogle Scholar
  33. 33.
    Reis EFD, Campos FS, Lage AP, Leite RC, Heneine LG, Vasconcelos WL, Lobato ZIP, Mansur HS (2006) Synthesis and characterization of poly (vinyl alcohol) hydrogels and hybrids for rMPB70 protein adsorption. Mater Res 9:185CrossRefGoogle Scholar
  34. 34.
    Kavitha B, Dasharatham D, Srinivasu D, Srinivas CH, Narsimlu NJ (2011) Synthesis and characterization of TiO2 doped poly (vinyl alcohol) polymer composites. J Chem Pharm Sci 4:155Google Scholar
  35. 35.
    Peppas NA, Huang Y, Torres-Lugo M, Ward JH, Zhang J (2000) Physicochemical foundations and structural design of hydrogels in medicine and biology. Annu Rev Biomed Eng 2:9PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Sapalidis AA, Katsaros FK, Romanos GE, Kakizis NK, Kanellopoulos NK (2007) Preparation and characterization of novel poly-(vinyl alcohol)–Zostera flakes composites for packaging applications. Compos B 38:398CrossRefGoogle Scholar
  37. 37.
    Mc Gann MJ, Higginbotham CL, Geever LM, Nugent MJ (2009) The synthesis of novel pH-sensitive poly (vinyl alcohol) composite hydrogels using a freeze/thaw process for biomedical applications. Int J Pharm 372:154PubMedCrossRefGoogle Scholar
  38. 38.
    Nugent MJ, Higginbotham CL (2007) Preparation of a novel freeze thawed poly (vinyl alcohol) composite hydrogel for drug delivery applications. Eur J Pharm Biopharm 67:377PubMedCrossRefGoogle Scholar
  39. 39.
    Costa-Junior ES, Barbosa-Stancioli EF, Mansur AA, Vasconcelos WL, Mansur HS (2009) Preparation and characterization of chitosan/poly (vinyl alcohol) chemically crosslinked blends for biomedical applications. Carbohydr Polym 76:472CrossRefGoogle Scholar
  40. 40.
    Yoon SD, Chough SH, Park HR (2007) Preparation of resistant starch/poly(vinyl alcohol) blend films with added plasticizer and crosslinking agents. J Appl Polym Sci 106:2485CrossRefGoogle Scholar
  41. 41.
    Ding J, Chen SC, Wang XL, Wang YZ (2009) Synthesis and properties of thermoplastic poly(vinyl alcohol)-graft-lactic acid copolymers. Ind Eng Chem Res 48:788CrossRefGoogle Scholar
  42. 42.
    Fernandez-Saiz P, Lagaron JM, Hernandez-Munoz P, Ocio MJ (2008) Characterization of antimicrobial properties on the growth of S. aureus of novel renewable blends of gliadins and chitosan of interest in food packaging and coating applications. Int J Food Microbiol 124:13PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Guirguis OW, Moselhey MT (2012) Thermal and structural studies of poly (vinyl alcohol) and hydroxypropyl cellulose blends. Nat Sci 4:57Google Scholar
  44. 44.
    Liang S, Liu L, Huang Q, Yama KL (2009) Preparation of single or double-network chitosan/poly (vinyl alcohol) gel films through selectively cross-linking method. Carbohydr Polym 77:718CrossRefGoogle Scholar
  45. 45.
    Dutta PK, Tripathi S, Mehrotra GK, Dutta J (2009) Perspectives for chitosan based antimicrobial films in food applications. Food Chem 114:1173CrossRefGoogle Scholar
  46. 46.
    Draughon FA (2004) Use of botanicals as biopreservatives in foods. Food Technol 58:20Google Scholar
  47. 47.
    Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12:564PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Singletary K (2010) Black pepper overview of health benefits. Nutr Today 45:43CrossRefGoogle Scholar
  49. 49.
    Singh G, Marimuthu P, Catalan C, deLampasona MP (2004) Chemical, antioxidant and antifungal activities of volatile oil of black pepper and its acetone extract. J Sci Food Agric 84:1878CrossRefGoogle Scholar
  50. 50.
    Srinivas PV, Rao JM (1999) Isopiperolein B: an alkamide from Piper nigrum. Phytochemistry 52:957CrossRefGoogle Scholar
  51. 51.
    Bajad S, Singla AK, Bedi KL (2002) Liquid chromatographic method for determination of piperine in rat plasma: application to pharmacokinetics. J Chromatogr B 776:245CrossRefGoogle Scholar
  52. 52.
    Dessi MA, deiana M, Rosa A, Pipredda M, Cottigilia F, Bonsignore L, Deiddn D, Pompei R, Corongiu F (2011) Antioxidant activity of extracts from plants growing in Sardinia. Phytother Res 15:511CrossRefGoogle Scholar
  53. 53.
    Bandoniene D, Venskutonis PR, Gruzdiene D, Murkovic M (2002) Antioxidative activity of sage (Salvia officinalis L.), savory (Satureja hortensis L.) and borage (Borago officinalis L.) extracts in rapeseed oil. Eur J Lipid Sci Technol 104:286CrossRefGoogle Scholar
  54. 54.
    Vardar-Ünlü G, Candan F, Sokmen A, Daferera D, Polissiou M, Sokmen M, Donmez E, Tepe B (2003) Antimicrobial and antioxidant activity of the essential oil and methanol extracts of Thymus pectinatus Fisch. et Mey. Var. pectinatus (Lamiaceae). J Agric Food Chem 51:63PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Ozcan M, Erkmen O (2001) Antimicrobial activity of the essential oils of Turkish plant spices. Eur Food Res Technol 212:658CrossRefGoogle Scholar
  56. 56.
    Sutyarso KM, Rosa E (2014) Effects of black Pepper (Piper nigrum Linn) extraction on sexual drive in male mice. Res J Med Plants 9:1Google Scholar
  57. 57.
    De la Caba K, Pena C, Ciannamea EM, Stefani PM, Mondragon I, Ruseckaite RA (2012) Characterization of soybean protein concentrate-stearic acid/palmitic acid blend edible films. J Appl Polym Sci 124:1796CrossRefGoogle Scholar
  58. 58.
    Park SY, Jun ST, Marsh KS (2001) Physical properties of PVOH/chitosan-blended films cast from different solvents. Food Hydrocol 15:499CrossRefGoogle Scholar
  59. 59.
    Hyder MN, Chen P (2009) Pervaporation dehydration of ethylene glycol with chitosan–poly (vinyl alcohol) blend membranes: effect of CS–PVA blending ratios. J Membr Sci 340:171CrossRefGoogle Scholar
  60. 60.
    Bahrami SB, Kordestani SS, Mirzadeh H, Mansoori P (2003) Poly (vinyl alcohol)-chitosan blends: preparation, mechanical and physical properties. Iran Polym J 12:139Google Scholar
  61. 61.
    Wu C, Tian J, Li S, Wu T, Hu Y, Chen S, Sugawara T, Ye X (2016) Structural properties of films and rheology of film-forming solutions of chitosan gallate for food packaging. Carbohydr Polym 146:10PubMedCrossRefGoogle Scholar
  62. 62.
    Schreiber SB, Bozell JJ, Hayes DG, Zivanovic S (2013) Introduction of primary antioxidant activity to chitosan for application as a multifunctional food packaging material. Food Hydrocoll 33:207CrossRefGoogle Scholar
  63. 63.
    Silva-Weiss A, Bifani V, Ihl M, Sobral PJA, Gomez-Guillen MC (2013) Structural properties of films and rheology of film-forming solutions based on chitosan and chitosan-starch blend enriched with murta leaf extract. Food Hydrocoll 31:458CrossRefGoogle Scholar
  64. 64.
    Sun X, Wang Z, Kadouh H, Zhou K (2014) The antimicrobial, mechanical, physical and structural properties of chitosan–gallic acid films. LWT: Food Sci Technol 57:83CrossRefGoogle Scholar
  65. 65.
    El-Hefian EA, Nasef MM, Yahaya AH (2011) Preparation and characterization of chitosan/poly (vinyl alcohol) blended films: mechanical, thermal and surface investigations. J Chem 8:91Google Scholar
  66. 66.
    Hager AS, Vallons KJ, Arendt EK (2012) Influence of gallic acid and tannic acid on the mechanical and barrier properties of wheat gluten films. J Agric Food Chem 60:6157PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Alkan D, Aydemir LY, Arcan I, Yavuzdurmaz H, Atabay HI, Ceylan C, Yemenicioglu A (2011) Development of flexible antimicrobial packaging materials against Campylobacter jejuni by incorporation of gallic acid into zein-based films. J Agric Food Chem 59:11003PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Grande R, Carvalho AJ (2011) Compatible ternary blends of chitosan/poly(vinyl alcohol)/poly(lactic acid) produced by oil-in-water emulsion processing. Biomacromolecules 12:907PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Cano A, Fortunati E, Chafer M, Kenny JM, Chiralt A, Gonzalez-Martine C (2015) Properties and ageing behavior of pea starch films as affected by blend with poly (vinyl alcohol). Food Hydrocoll 48:84CrossRefGoogle Scholar
  70. 70.
    Quinn A, Tjipto E, Yu A, Gengenbach TR, Caruso F (2007) Polyelectrolyte blend multilayer films: surface morphology, wettability, and protein adsorption characteristics. Langmuir 23:4944PubMedCrossRefGoogle Scholar
  71. 71.
    Lewandowska K (2015) Characterization of chitosan composites with synthetic polymers and inorganic additives. Int J Biol Macromol 81:159PubMedCrossRefGoogle Scholar
  72. 72.
    Ogawa K, Hirano S, Miyanishi T, Yui T, Watanabe T (1984) A new polymorph of chitosan. Macromolecules 17:973CrossRefGoogle Scholar
  73. 73.
    Wang SF, Shen L, Zhang WD, Tong YJ (2005) Preparation and mechanical properties of chitosan/carbon nanotubes composites. Macromolecules 6:3067Google Scholar
  74. 74.
    Kweon HY, Um IC, Park YH (2001) Structural and thermal characteristics of Antheraea pernyi silk fibroin/chitosan blend film. Polymer 42:6651CrossRefGoogle Scholar
  75. 75.
    Ogawa K, Yui T, Okuyama K (2004) Three D structures of chitosan. Int J Biol Macromol 34:1PubMedCrossRefGoogle Scholar
  76. 76.
    Fabish RS, Yoshoda W, Cohen YJ (2002) Contact angle study on polymer-grafted silicon wafers. J Colloid Interface Sci 256:341CrossRefGoogle Scholar
  77. 77.
    Hossam MS (2007) Effect of electron beam irradiation on the structural properties of PVA/PAM/CMC ternary blend films. J Macromol Sci A 44:465Google Scholar
  78. 78.
    Abdelaziz M (2001) Cerium (III) doping effects on optical and thermal properties of PVA films. Phys B 406:1300CrossRefGoogle Scholar
  79. 79.
    Yamin D, Zuyong X, Rong L (1997) Blend films of chitosan/starch. Wuhan Univ J Nat Sci 2:220CrossRefGoogle Scholar
  80. 80.
    Gouda M, Keshk SMAS (2010) Evaluation of multifunctional properties of cotton fabric based on metal/chitosan film. Carbohydr Polym 80:504CrossRefGoogle Scholar
  81. 81.
    Somashekarappa H, Prakash Y, Hemalatha K, Demappa T, Somashekar R (2013) Preparation and characterization of HPMC/PVP blend films plasticized with sorbitol. Indian J Mater Sci 2013:7Google Scholar
  82. 82.
    Cassu SN, Felisberti MI (1997) Poly (vinyl alcohol) and poly(vinyl pyrrolidone) blends: miscibility, microheterogeneity and free volume change. Polymer 38:3907CrossRefGoogle Scholar
  83. 83.
    Fatma K, Tamer U (2012) Encapsulation of vanillin/cyclodextrin inclusion complex in electrospun polyvinyl alcohol (PVA) nanowebs: prolonged shelf-life and high temperature stability of vanillin. Food Chem 133:641CrossRefGoogle Scholar
  84. 84.
    Brugnerotto J, Lizardi J, Goycoolea FM, Arguelles-Monal W, Desbrieres J, Rinaudo M (2001) An infrared investigation in relation with chitin and chitosan characterization. Polymer 42:3569CrossRefGoogle Scholar
  85. 85.
    Yoon SJ, Chu DC, Juneja LR (2008) Chemical and physical properties, safety and application of partially hydrolysed guar gum as dietary fiber. J Clin Biochem Nutr 42:1PubMedCrossRefGoogle Scholar
  86. 86.
    Cao S, Shi Y, Chen G (1998) Blend of chitosan acetate salt with poly (N-vinyl-2-pyrrolidone): interaction between chain-chain. Polym Bull 41:553CrossRefGoogle Scholar
  87. 87.
    Zu Y, Zhang Y, Zhao X, Shan C, Zu S, Wang K, Li Y, Ge Y (2012) Preparation and characterization of chitosan–polyvinyl alcohol blend hydrogels for the controlled release of nano-insulin. Int J Biol Macromol 50:82PubMedCrossRefGoogle Scholar
  88. 88.
    Li X, Goh SH, Lai YH, Wee ATS (2000) Miscibility of carboxyl-containing polysiloxane/poly(vinylpyridine) blends. Polymer 41:6563CrossRefGoogle Scholar
  89. 89.
    Cano A, Fortunati E, Chafer M, Gonzalez-Martınez C, Chiralt A, Kenny JM (2009) Effect of cellulose nanocrystals on the properties of pea starch–poly (vinyl alcohol) blend films. J Mater Sci 44:6404CrossRefGoogle Scholar
  90. 90.
    Rescignano N, Fortunati E, Montesano S, Emilianini C, Kenny JM, Martino S, Armentano I (2014) PVA bio-nanocomposites: a new take-off using cellulose nanocrystals and PLGA nanoparticles. Carbohydr Polym 99:47PubMedCrossRefGoogle Scholar
  91. 91.
    Peresin MS, Habibi Y, Zoppe JO, Pawlak JJ, Rojas OJ (2010) Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromolecules 11(3):674PubMedCrossRefGoogle Scholar
  92. 92.
    Lee SY, Mohan DJ, Kang IE, Doh G-H, Lee S, Han SO (2009) Nanocellulose reinforced PVA composite films: effects of acid treatment and filler loading. Fibers Polym 10:77CrossRefGoogle Scholar
  93. 93.
    Bonilla J, Atares L, Vargas M, Chiralt A (2013) Properties of wheat starch film-forming dispersions and films as affected by chitosan addition. J Food Eng 114(3):303CrossRefGoogle Scholar
  94. 94.
    Bonilla J, Fortunati E, Atares L, Chiralt A, Kenny JM (2014) Physical, structural and antimicrobial properties of poly vinyl alcohol-chitosan biodegradable films. Food Hydrocoll 4(35):463CrossRefGoogle Scholar
  95. 95.
    Khan A, Khan RA, Salmieri S, Le Tien C, Riedl B, Bouchard J, Chauve G, Tan V, Kamal MR, Lacroix M (2012) Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydr Polym 90:1601PubMedCrossRefGoogle Scholar
  96. 96.
    Martinez-Camachoa AP, Cortez-Rochaa MO, Ezquerra-Brauera JM, Graciano-Verdugob AZ, Rodriguez-Felixa F, Castillo-Ortegac MM, Yepiz-Gomeza MS, Plascencia-Jatomea M (2010) Chitosan composite films: thermal, structural, mechanical and antifungal properties. Carbohydr Polym 82:305CrossRefGoogle Scholar
  97. 97.
    Jun N, Yingshan Z, Dongzhi Y, Xiangmei C, Qiang X, Fengmin L (2008) Electrospun water-soluble carboxyethyl chitosan/poly (vinyl alcohol) nanofibrous membrane as potential wound dressing for skin regeneration. Biomacromolecules 9:349CrossRefGoogle Scholar
  98. 98.
    Ortega-Toro R, Collazo-Biliardi S, Talens P, Chiralt A (2016)) Influence of citric acid on the properties and stability of starch-polycaprolactone based films. J Appl Polym Sci 133:42220CrossRefGoogle Scholar
  99. 99.
    Alves NM, Fernandes SL, Levato R, Mano JF (2011) Preparation and characterization of new biodegradable films made from poly (L-lactic acid) and chitosan blends using a common solvent. J Macromol Sci B 50:1121CrossRefGoogle Scholar
  100. 100.
    Ratana R, Manisara P, Pitt S (2003) Characterisation of beta-chitin/poly (vinyl alcohol) blend films. Polym Test 22:381CrossRefGoogle Scholar
  101. 101.
    Almeida EVR, Frollini E, Castellan A, Coma V (2010) Chitosan, sisal cellulose, and biocomposite chitosan/sisal cellulose films prepared from thiourea/NaOH aqueous solution. Carbohydr Polym 80:655CrossRefGoogle Scholar
  102. 102.
    Introzzi L, Biagioni P, Holz T, Schiraldi A, Piergiovanni L (2011) Wetting of biopolymer coatings: contact angle kinetics and image analysis investigation. Langmuir 27:7563PubMedCrossRefGoogle Scholar
  103. 103.
    Devlieghere F, Vermeulen A, Debevere J (2004) Chitosan: antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. Food Microbiol 21:703CrossRefGoogle Scholar
  104. 104.
    Ouattara B, Simard RE, Piette G, Begin A, Rolle RA (2000) Inhibition of surface spoilage bacteria in processed meats by application of antimicrobial films prepared with chitosan. Int J Food Microbiol 62:139CrossRefGoogle Scholar
  105. 105.
    Zang Z, Chen L, Ji J, Huang Y, Chen D (2003) Antibacterial properties of cotton fabrics treated with chitosan. Text Res J 73:1103CrossRefGoogle Scholar
  106. 106.
    Lim S, Hudson SM (2003) J Macromol Sci C 43:223CrossRefGoogle Scholar
  107. 107.
    Tsai GJ, Su WH (1999) Antibacterial activity of shrimp chitosan against Escherichia coli. J Food Prot 62:239PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Materials ScienceMangalore UniversityMangalagangotriIndia
  2. 2.P. G. Department of Studies in ChemistryKarnatak UniversityDharwadIndia
  3. 3.Department of ChemistryKarnatak Science CollegeDharwadIndia
  4. 4.Department of Applied BotanyMangalore UniversityMangalagangotriIndia
  5. 5.EdmontonCanada
  6. 6.Department of Industrial ChemistryMangalore UniversityMangalagangotriIndia
  7. 7.Department of Studies in Biotechnology and MicrobiologyKarnatak UniversityDharwadIndia

Personalised recommendations