Journal of Polymers and the Environment

, Volume 27, Issue 2, pp 333–342 | Cite as

In Situ Thermodielectric Analysis of the Gelatinization Mechanism of Raw Maize Starch: An Experimental and Theoretical Approach

  • S. X. Drakopoulos
  • J. Karger-Kocsis
  • G. C. PsarrasEmail author
Original Paper


Raw maize starch, initially stored at ambient temperature and relative humidity, was examined by means of Broadband Dielectric Spectroscopy in the temperature range from 30 to 130 °C and in the frequency range from 0.1 Hz to 1 MHz. The α-relaxation processes of amylose and amylopectin were, for the first time, separately recorded and analyzed by employing the electric modulus formalism, while the gelatinization mechanism is discussed and modeled. Molecular dynamics analysis, conducted via the Vogel–Fulcher–Tammann equation, and the Debye and Cole–Cole dielectric function models were employed to further understand the gelatinization process and the dielectric behavior of amylose and amylopectin respectively. In addition, the transformation of V-amylose to free amylose was also observed and discussed.


Maize starch Gelatinization process Broadband Dielectric Spectroscopy Electric modulus Molecular dynamics 



The work reported here was supported by the Hungarian Scientific Research Fund (OTKA) through the project K 109409.


  1. 1.
    Dong Y, Matson JB, Edgar KJ (2017) Olefin cross-metathesis in polymer and polysaccharide chemistry: a review. Biomacromol 18:1661–1676. CrossRefGoogle Scholar
  2. 2.
    Ruellan A, Guinault A, Sollogoub C et al (2015) Industrial vegetable oil by-products increase the ductility of polylactide. Express Polym Lett 9:1087–1103. CrossRefGoogle Scholar
  3. 3.
    Zhang Y, Rempel C, Liu Q (2014) Thermoplastic starch processing and characteristics: a review. Crit Rev Food Sci Nutr 54:1353–1370. CrossRefGoogle Scholar
  4. 4.
    Chung YL, Ansari S, Estevez L et al (2010) Preparation and properties of biodegradable starch-clay nanocomposites. Carbohydr Polym 79:391–396. CrossRefGoogle Scholar
  5. 5.
    Tavares LB, Boas CV, Schleder GR et al (2016) Bio-based polyurethane prepared from Kraft lignin and modified castor oil. Express Polym Lett 10:927–940. CrossRefGoogle Scholar
  6. 6.
    Jane J, Chen YY, Lee LF et al (1999) Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch. Cereal Chem 76:629–637. CrossRefGoogle Scholar
  7. 7.
    Nafchi AM, Moradpour M, Saeidi M, Alias AK (2013) Thermoplastic starches: properties, challenges, and prospects. Starch/Staerke 65:61–72. CrossRefGoogle Scholar
  8. 8.
    Tábi T, Kovács JG (2007) Examination of injection moulded thermoplastic maize starch. Express Polym Lett 1:804–809. CrossRefGoogle Scholar
  9. 9.
    Zaikov GE (2005) Chemistry of polysaccharides. Nova Science Publishers, New YorkGoogle Scholar
  10. 10.
    Belitz HD, Grosch W, Schieberle P et al (2009) Food chemistry. Springer, BerlinGoogle Scholar
  11. 11.
    Obiro WC, Sinha Ray S, Emmambux MN (2012) V-amylose structural characteristics, methods of preparation, significance, and potential applications. Food Rev Int 28:412–438. CrossRefGoogle Scholar
  12. 12.
    Xie F, Pollet E, Halley PJ, Avérous L (2013) Starch-based nano-biocomposites. Prog Polym Sci 38:1590–1628. CrossRefGoogle Scholar
  13. 13.
    Karger-Kocsis J, Kmetty Á, Lendvai L et al (2015) Water-assisted production of thermoplastic nanocomposites: a review. Materials (Basel) 8:72–95. CrossRefGoogle Scholar
  14. 14.
    Hongsprabhas P, Israkarn K (2008) New insights on the characteristics of starch network. Food Res Int 41:998–1006. CrossRefGoogle Scholar
  15. 15.
    Tester RF, Morrison WR (1990) Swelling and gelatinization of cereal starches. I. Effects of amylopectin, amylose, and lipids. Cereal Chem 67:551–557Google Scholar
  16. 16.
    Drakopoulos SX, Karger-Kocsis J, Kmetty Á et al (2017) Thermoplastic starch modified with microfibrillated cellulose and natural rubber latex: a broadband dielectric spectroscopy study. Carbohydr Polym 157:.
  17. 17.
    Lendvai L, Karger-Kocsis J, Kmetty A, Drakopoulos SX (2016) Production and characterization of microfibrillated cellulose-reinforced thermoplastic starch composites. J Appl Polym Sci. Google Scholar
  18. 18.
    Hietala M, Mathew AP, Oksman K (2013) Bionanocomposites of thermoplastic starch and cellulose nanofibers manufactured using twin-screw extrusion. Eur Polym J 49:950–956. CrossRefGoogle Scholar
  19. 19.
    Moon RJ, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40, 3941–3994.CrossRefGoogle Scholar
  20. 20.
    Angellier H, Molina-Boisseau S, Dole P, Dufresne A (2006) Thermoplastic starch-Waxy maize starch nanocrystals nanocomposites. Biomacromol 7:531–539. CrossRefGoogle Scholar
  21. 21.
    Wu D, Samanta A, Srivastava RK, Hakkarainen M (2017) Starch-derived nanographene oxide paves the way for electrospinnable and bioactive starch scaffolds for bone tissue engineering. Biomacromol 18:1582–1591. CrossRefGoogle Scholar
  22. 22.
    Radhakrishnan J, Subramanian A, Krishnan UM, Sethuraman S (2017) Injectable and 3D bioprinted polysaccharide hydrogels: from cartilage to osteochondral tissue engineering. Biomacromol 18:1–26. CrossRefGoogle Scholar
  23. 23.
    Mele E (2016) Electrospinning of natural polymers for advanced wound care: towards responsive and adaptive dressings. J Mater Chem B 4:4801–4812. CrossRefGoogle Scholar
  24. 24.
    Kanapitsas A, Tsonos C, Psarras GC, Kripotou S (2016) Barium ferrite/epoxy resin nanocomposite system: fabrication, dielectric, magnetic and hydration studies. Express Polym Lett 10:227–236. CrossRefGoogle Scholar
  25. 25.
    Tsonos C, Pandis C, Soin N et al (2015) Multifunctional nanocomposites of poly(vinylidene fluoride) reinforced by carbon nanotubes and magnetite nanoparticles. Express Polym Lett 9:1104–1118. CrossRefGoogle Scholar
  26. 26.
    Tsangaris GM, Psarras GC, Kouloumbi N (1998) Electric modulus and interfacial polarization in composite polymeric systems. J Mater Sci 33:2027–2037. CrossRefGoogle Scholar
  27. 27.
    Tsangaris GM, Psarras GC (1999) Dielectric response of a polymeric three-component composite. J Mater Sci 34:2151–2157. CrossRefGoogle Scholar
  28. 28.
    Psarras GC, Sofos GA, Vradis A et al (2014) HNBR and its MWCNT reinforced nanocomposites: crystalline morphology and electrical response. Eur Polym J 54:190–199. CrossRefGoogle Scholar
  29. 29.
    Psarras GC, Siengchin S, Karahaliou PK et al (2011) Dielectric relaxation phenomena and dynamics in polyoxymethylene/polyurethane/alumina hybrid nanocomposites. Polym Int 60:1715–1721. CrossRefGoogle Scholar
  30. 30.
    Kremer F, Schönhals A (2003) Broadband dielectric spectroscopy. Springer, BerlinCrossRefGoogle Scholar
  31. 31.
    Vryonis O, Anastassopoulos DL, Vradis AA, Psarras GC (2016) Dielectric response and molecular dynamics in epoxy-BaSrTiO3 nanocomposites: effect of nanofiller loading. Polymer 95:82–90. CrossRefGoogle Scholar
  32. 32.
    Kalmykov YP, Coffey WT, Crothers DSF, Titov SV (2004) Microscopic models for dielectric relaxation in disordered systems. Phys Rev E 70:11. Google Scholar
  33. 33.
    Psarras GC (2010) Conductivity and dielectric characterization of polymer nanocomposites. In: Tjong SC, Mai Y-W (eds) Physical properties and applications of polymer nanocomposites, 1st edn. Elsevier, Amsterdam, pp 31–69Google Scholar
  34. 34.
    Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics I. Alternating current characteristics. J Chem Phys 9:341–351. CrossRefGoogle Scholar
  35. 35.
    Davidson DW, Cole RH (1950) Dielectric relaxation in glycerine. J Chem Phys 18:1417–1417. CrossRefGoogle Scholar
  36. 36.
    Havriliak S, Negami S (1967) A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer 8:161–210. CrossRefGoogle Scholar
  37. 37.
    Miller LA, Gordon J, Davis EA (1991) Dielectric and thermal transition properties of chemically modified starches during heating. Cereal Chem 68:441–448Google Scholar
  38. 38.
    Venkatesh MS, Raghavan GSV (2004) An overview of microwave processing and dielectric properties of agri-food materials. Biosyst Eng 88:1–18. CrossRefGoogle Scholar
  39. 39.
    Einfeldt J, Meißner D, Kwasniewski A, Einfeldt L (2001) Dielectric spectroscopic analysis of wet and well dried starches in comparison with other polysaccharides. Polymer 42:7049–7062. CrossRefGoogle Scholar
  40. 40.
    Majumder TP, Meißner D, Schick C (2004) Dielectric processes of wet and well-dried wheat starch. Carbohydr Polym 56:361–366. CrossRefGoogle Scholar
  41. 41.
    Majumder TP, Meißner D, Schick C, Roy SK (2006) Phase transition phenomena and the corresponding relaxation process of wheat starch-water polymer matrix studied by dielectric spectroscopic method. Carbohydr Polym 65:129–133. CrossRefGoogle Scholar
  42. 42.
    Kalini A, Gatos KG, Karahaliou PK, Georga SN, Krontiras CA, Psarras GC (2010) Probing the dielectric response of polyurethane/alumina nanocomposites. J Polym Sci Part B: Polym Phys 48:2346–2354. CrossRefGoogle Scholar
  43. 43.
    Myllärinen P (2002) The crystallinity of amylose and amylopectin films. Carbohydr Polym 48:41–48. CrossRefGoogle Scholar
  44. 44.
    Raphaelides S, Karkalas J (1988) Thermal dissociation of amylose-fatty acid complexes. Carbohydr Res 172:65–82CrossRefGoogle Scholar
  45. 45.
    Maistros GM, Bucknall CB, Bedford C, Oal MK (1994) Resin blends during curing. Polym Eng Sci 34:1517–1528CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Smart Materials & Nanodielectrics Laboratory, Department of Materials ScienceUniversity of PatrasPatrasGreece
  2. 2.Department of MaterialsLoughborough UniversityLeicestershireEngland, UK
  3. 3.Department of Polymer Engineering, Faculty of Mechanical EngineeringBudapest University of Technology and EconomicsBudapestHungary
  4. 4.MTA–BME Research Group for Composite Science and TechnologyBudapestHungary

Personalised recommendations