Advertisement

Sustainable Bioconversion of Cassava Waste to Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Halogeometricum borinquense Strain E3

  • Bhakti B. SalgaonkarEmail author
  • Kabilan Mani
  • Judith M. Bragança
Original Paper
  • 48 Downloads

Abstract

The production of sago starch from cassava at an industrial scale in Salem, Tamil Nadu, India results in discharge of starch/carbon-rich fibrous waste and effluents, contributing to a major environmental problem. The present study aimed at exploring the potential of an extremely halophilic archaeon, Halogeometricum borinquense strain E3 to utilize starch and cassava waste (CW) as carbon substrate and synthesis of polyhydroxyalkanoates (PHAs). The culture E3 was able to grow and utilize both starch and CW with maximum PHA concentration of 4.6 g L−1 and 1.52 g L−1, respectively. When grown in starch, the cells of the strain E3 appeared bright orange due to produced carotenoids, whereas, when grown in CW the culture cells appeared light brown due to masking of the pigment by the impurities from CW hydrolysate. The polymer obtained from starch and CW hydrolysate was characterized using UV–Visible spectrophotometry, differential scanning calorimetry, fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, and was reported to be a co-polymer of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] comprising of 13.11% and 19.65% 3HV units, respectively. The present investigation is supportive of our previous studies which indicated Hgm. borinquense strain E3 as an attractive candidate for production of co-polymer of P(3HB-co-3HV) when fed with commercial substrate such as glucose and agro-industrial waste such as sugarcane bagasse.

Keywords

Archaea Cassava waste Polyhydroxyalkanoates Copolymer Halophiles 

Abbreviations

PHA

Polyhydroxyalkanoates

P(3HB)

Poly-3-hydroxybutyrate

P(3HB-co-3HV)

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)

CW

Cassava waste

Hgm

Halogeometricum

Har

Haloarcula

Nnm

Natrinema

Hfx

Haloferax

TS

Total solids

VS

Volatile solids

COD

Chemical oxygen demand

CDM

Cell dry mass

rpm

Revolutions per minute

Notes

Acknowledgements

B. B. Salgaonkar thank Council of Scientific and Industrial Research (CSIR), India for Research Associateship (RA) (09/919(0030)/2016-EMR-I). Authors acknowledge the Sophisticated Instrumentation Facility (SIF), Chemistry Division, VIT University, Vellore for FT-IR and 1H NMR analysis. Authors are grateful to Prof. Narendra Nath Ghosh, Dept. of Chemistry, BITS Pilani Goa Campus, for DSC analysis.

Author Contributions

BBS, KM and JMB conceived the idea, designed the experiments and analyzed the data. BBS performed the experiments and drafted the manuscript, which was reviewed and edited by KM and JMB.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. 1.
    Shittu TA, Alimi BA, Wahab B, Sanni LO, Abass AB (2016) Tropical roots and tubers: production, processing and technology, Wiley, Hoboken, pp 415–450CrossRefGoogle Scholar
  2. 2.
    Edhirej A, Sapuan SM, Jawaid M, Zahari NI (2017) Polym Compos 38:555–570CrossRefGoogle Scholar
  3. 3.
    Pandey A, Soccol CR, Nigam P, Soccol VT, Vandenberghe LP, Mohan R (2000) Bioresour Technol 74:81–87CrossRefGoogle Scholar
  4. 4.
    Sánchez AS, Silva YL, Kalid RA, Cohim E, Torres EA (2017) Renew Sustain Energ Rev 73:1265–1275CrossRefGoogle Scholar
  5. 5.
    Rajakumari D, Gomath V (2017) Ph.D. Dissertation, Bharathidasan University, Tamil Nadu, India. https://scholar.google.com/scholar?um=1&ie=UTF-8&lr&q=related:orLqWf40tskBFM:scholar.google.com/
  6. 6.
  7. 7.
    Srinivas T (2007) Starch Stärke 59:477–481CrossRefGoogle Scholar
  8. 8.
    Rajendran R, Soora M, Kandasamy S, Dananjeyan B, Krishnamurthy K, Benckiser G (2011) Int J Sustain Eng 4:348–358CrossRefGoogle Scholar
  9. 9.
    Poomipuk N, Reungsang A, Plangklang P (2014) Int J Biol Macromol 65:51–64CrossRefGoogle Scholar
  10. 10.
    Silva DAD, Antonio RV, Rossi JM, Pena RDS (2014) Food Sci Technol 34:738–745CrossRefGoogle Scholar
  11. 11.
    Ma Y, Galinski EA, Grant WD, Oren A, Ventosa A (2010) Appl Environ Microbiol 76:6971–6981CrossRefGoogle Scholar
  12. 12.
    Chen S, Xu Y, Liu HC, Yang AN, Ke LX (2017) Int J Syst Evol Microbiol 67:818–823CrossRefGoogle Scholar
  13. 13.
    Koller M, Hesse P, Fasl H, Stelzer F, Braunegg G (2017) Appl Food Biotechnol 4:65–78Google Scholar
  14. 14.
    Bhattacharyya A, Saha J, Haldar S, Bhowmic A, Mukhopadhyay UK, Mukherjee J (2014) Extremophiles 18:463–470CrossRefGoogle Scholar
  15. 15.
    Pramanik A, Mitra A, Arumugam M, Bhattacharyya A, Sadhukhan S, Ray A, Haldar S, Mukhopadhyay UK, Mukherjee J (2012) Folia Microbiol 57:71–79CrossRefGoogle Scholar
  16. 16.
    Taran M (2011) J Hazard Mater 188:26–28CrossRefGoogle Scholar
  17. 17.
    Hermann-Krauss C, Koller M, Muhr A, Fasl H, Stelzer F, Braunegg G (2013) Archaea 2013:129268CrossRefGoogle Scholar
  18. 18.
    Huang TY, Duan KJ, Huang SY, Chen CW (2006) J Ind Microbiol Biotechnol 33:701–706CrossRefGoogle Scholar
  19. 19.
    Salgaonkar BB, Bragança JM (2017) Bioengineering 4:50CrossRefGoogle Scholar
  20. 20.
    Salgaonkar BB, Bragança JM (2015) Int J Biol Macromol 78:339–346CrossRefGoogle Scholar
  21. 21.
    Norberg P, Hofstein BV (1969) J Gen Microbiol 55:251–256CrossRefGoogle Scholar
  22. 22.
    American Public Health Association (1981) American Water Works Association. Standard methods for the examination of water and wastewater: selected analytical methods approved and cited by the United States Environmental Protection Agency, 20th edn. American Public Health Association, Washington, DCGoogle Scholar
  23. 23.
    Raposo F, De la Rubia MA, Borja R, Alaiz M (2008) Talanta 76:448–453CrossRefGoogle Scholar
  24. 24.
    Woiciechowski AL, Nitsche S, Pandey A, Socco CR (2002) Braz Arch Biol Technol 45:393–400CrossRefGoogle Scholar
  25. 25.
    Dubois M, Gilles KA, Hamilton JK, Rebers PAT, Smith F (1956) Anal Chem 28:350–356CrossRefGoogle Scholar
  26. 26.
    Labconco CA (1998) Guide to kjeldahl nitrogen determination methods and apparatus. Labconco Corporation, Houston, TXGoogle Scholar
  27. 27.
    Spiekermann P, Rehm BH, Kalscheuer R, Baumeister D, Steinbüchel A (1999) Arch Microbiol 171:73–80CrossRefGoogle Scholar
  28. 28.
    Salgaonkar BB, Mani K, Braganca JM (2013) J Appl Microbiol 114:1347–1356CrossRefGoogle Scholar
  29. 29.
    Sánchez RJ, Schripsema J, da Silva LF, Taciro MK, Pradella JG, Gomez JGC (2003) Eur Polym J 39:1385–1394CrossRefGoogle Scholar
  30. 30.
    Law JH, Slepecky RA (1961) J Bacterial 82:33–36Google Scholar
  31. 31.
    Legat A, Gruber C, Zangger K, Wanner G, Stan-Lotter H (2010) Appl Microbiol Biotechnol 87:1119–1127CrossRefGoogle Scholar
  32. 32.
    Koller M, Maršálek L, de Sousa Dias MM, Braunegg G (2017) New Biotechnol 37:24–38CrossRefGoogle Scholar
  33. 33.
    Lillo JG, Rodriguez-Valera F (1990) Appl Environ Microbiol 56:2517–2521PubMedPubMedCentralGoogle Scholar
  34. 34.
    Danis O, Ogan A, Tatlican P, Attar A, Cakmakci E, Mertoglu B, Birbir M (2015) Extremophiles 19:515–524CrossRefGoogle Scholar
  35. 35.
    Lu Q, Han J, Zhou L, Zhou J, Xiang H (2008) J Bacteriol 190:4173–4180CrossRefGoogle Scholar
  36. 36.
    Chen CW, Don TM, Yen HF (2006) Process Biochem 41:2289–2296CrossRefGoogle Scholar
  37. 37.
    Hong K, Sun S, Tian W, Chen GQ, Huang W (1999) Appl Microbiol Biotechnol 51:523–526CrossRefGoogle Scholar
  38. 38.
    Gumel AM, Annuar MSM, Heidelberg T (2012) PLoS ONE 7:e45214CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Bhakti B. Salgaonkar
    • 1
    Email author
  • Kabilan Mani
    • 1
    • 2
  • Judith M. Bragança
    • 1
  1. 1.Department of Biological SciencesBirla Institute of Technology and Science (BITS) PilaniZuarinagarIndia
  2. 2.Department of BiotechnologyP.S.G. College of TechnologyCoimbatoreIndia

Personalised recommendations