Advertisement

Journal of Polymers and the Environment

, Volume 27, Issue 2, pp 286–298 | Cite as

Utilization of Carboxymethyl Cellulose from Durian Rind Agricultural Waste to Improve Physical Properties and Stability of Rice Starch-Based Film

  • Rungsiri Suriyatem
  • Rafael A. Auras
  • Pornchai RachtanapunEmail author
Original Paper
  • 80 Downloads

Abstract

The aim of this work was to enhance the mechanical properties and durability of rice starch (RS)-based film by incorporating carboxymethyl cellulose derived from durian rind (CMCd). Mechanical and thermal properties, swellability, permeability (oxygen and water), color, opacity, thermal stability and biodegradability of the films were determined. Fourier transform infrared (FTIR) and X-ray diffraction techniques were used to demonstrate interactions between films components and their compatibility. Incorporation of the CMCd into the RS-based film caused a decreased lightness, redness and whiteness index but increased transparency, yellowness and total color difference among the blended films and RS film. An increase of tensile strength for all RS/CMCd blended films without change of elongation at break was also observed. Decomposition temperature of the blended films was lower than the RS film while thermal stability was higher. All blended films provided higher equilibrium swelling ratio than the RS film. Incorporation of CMCd did not influence the water vapor and oxygen permeability of the blended films. The FTIR analysis confirmed the interactions between the –OH groups of RS and the COO– groups of CMCd. Scaning electron microscopy analysis represented homogenious cross-sectional surface of all films. The RS, CMCd and RS/CMCd 50:50 films were tested in simulated compost environmental conditions to study their biodegradability. The RS/CMCd 50:50 films showed lower evolved CO2 and %mineralization than the RS film.

Keywords

Agricultural waste Biodegradability Carboxymethyl cellulose Durian rind Rice starch 

Notes

Acknowledgements

This work was supported by Thailand Research Fund through the Royal Golden Jubilee Ph.D. Program (Grant No. PHD/0063/2555) and the Graduate School and the Faculty of Agro-Industry, Chiang Mai University. We wish to thank Center of Excellence in Materials Science and Technology, Chiang Mai University for financial support under the administration of Materials Science Research Center, Faculty of Science, Chiang Mai University. This research work was partially supported by Chiang Mai University.

Supplementary material

10924_2018_1343_MOESM1_ESM.pdf (19 kb)
Supplementary material 1—Fig. S1: Stress-strain plot of RS, CMCd and RS/CMCd blended films (PDF 18 KB)

References

  1. 1.
    Castro-Aguirre E, Iñiguez-Franco F, Samsudin H, Fang X, Auras R (2016) Adv Drug Deliv Rev 107:333–366Google Scholar
  2. 2.
    Alves V, Costa N, Hilliou L, Larotonda F, Gonçalves M, Sereno A, Coelhoso I (2006) Desalination 199:331–333Google Scholar
  3. 3.
    Li Y, Shoemaker CF, Ma J, Shen X, Zhong F (2008) Food Chem 109:616–623Google Scholar
  4. 4.
    Bourtoom T, Chinnan MS (2008) LWT-Food Sci Technol 41:1633–1641Google Scholar
  5. 5.
    Tongdeesoontorn W, Mauer L, Wongruong S, Sriburi P, Rachtanapun P (2011) Chem Cent J 5:1–8Google Scholar
  6. 6.
    Ghanbarzadeh B, Almasi H, Entezami AA (2011) Ind Crop Prod 33:229–235Google Scholar
  7. 7.
    Janjarasskul T, Krochta JM (2010) Annu Rev Food Sci Technol 1:415–448Google Scholar
  8. 8.
    Wittaya T (ed) (2012) Rice starch-based biodegradable films: properties enhancement. Structure and function of food engineering. InTech, LondonGoogle Scholar
  9. 9.
    Al-Hassan AA, Norziah MH (2012) Food Hydrocolloid 26:108–117Google Scholar
  10. 10.
    Mendes JF et al (2016) Carbohyd Polym 137:452–458Google Scholar
  11. 11.
    Saberi B, Thakur R, Vuong QV, Chockchaisawasdee S, Golding JB, Scarlett CJ, Stathopoulos CE (2016) Ind Crop Prod 86:342–352Google Scholar
  12. 12.
    Ghanbarzadeh B, Almasi H, Entezami AA (2010) Innov Food Sci Emerg Technol 11:697–702Google Scholar
  13. 13.
    Mathew S, Brahmakumar M, Abraham TE (2006) Biopolymers 82:176–187Google Scholar
  14. 14.
    Charpentier D, Mocanu G, Carpov A, Chapelle S, Merle L, Muller G (1997) Carbohyd Polym 32:177–186Google Scholar
  15. 15.
    Ma X, Chang PR, Yu J (2008) Carbohyd Polym 72:369–375Google Scholar
  16. 16.
    Rachtanapun P, Eitssayeam S, Pengpat K (2010) Adv Mat Res 93–94:17–21Google Scholar
  17. 17.
    Rachtanapun P, Kasetsart J (2009) Nat Sci 43:259–266Google Scholar
  18. 18.
    Togrul H, Arslan N (2003) Carbohyd Polym 54:73–82Google Scholar
  19. 19.
    Pushpamalar V, Langford SJ, Ahmad M, Lim YY (2006) Carbohyd Polym 64:312–318Google Scholar
  20. 20.
    Rachtanapun P, Kumthai S, Mulkarat N, Pintajam N, Suriyatem R (2015) IOP Conference Series: Materials Science and Engineering 87:012081Google Scholar
  21. 21.
    Rachtanapun P, Rattanapanone N (2011) J Appl Polym Sci 122:3218–3226Google Scholar
  22. 22.
    Rachtanapun P, Luangkamin S, Tanprasert K, Suriyatem R (2012) LWT-Food Sci Technol 48:52–58Google Scholar
  23. 23.
    Chandra R, Rustgi R (1998) Prog Polym Sci 23:1273–1335Google Scholar
  24. 24.
    ASTM-D882-12 (2012) Standard test method for tensile properties of thin plastic sheeting. ASTM International, West ConshohockenGoogle Scholar
  25. 25.
    Suriyatem R, Auras RA, Rachtanapun P (2018) Ind Crop Prod 122:37–48Google Scholar
  26. 26.
    ASTM-D3985-05 (2005) Standard test method for oxygen gas transmission rate through plastic film and sheeting using a coulometric sensor. ASTM International, West ConshohockenGoogle Scholar
  27. 27.
    ASTM-E96/E9M-16 (2016) Standard test methods for water vapor transmission of materials. ASTM International, West ConshohockenGoogle Scholar
  28. 28.
    ASTM-D5338-15 (2015) Standard test method for determining aerobic biodegradation of plastic materials under controlled composting conditions, incorporating thermophilic temperatures. ASTM International, West ConshohockenGoogle Scholar
  29. 29.
    Castro-Aguirre E, Auras R, Selke S, Rubino M, Marsh T (2017) Polym Degrad Stab 137:251–271Google Scholar
  30. 30.
    Kijchavengkul T, Auras R, Rubino M, Ngouajio M, Thomas Fernandez R (2006) Polym Test 25:1006–1016Google Scholar
  31. 31.
    Ban W, Song J, Argyropoulos DS, Lucia LA (2006) J Appl Polym Sci 100:2542–2548Google Scholar
  32. 32.
    Hu D, Wang H, Wang L (2016) LWT-Food Sci Technol 65:398–405Google Scholar
  33. 33.
    Mali S, Sakanaka LS, Yamashita F, Grossmann MVE (2005) Carbohyd Polym 60:283–289Google Scholar
  34. 34.
    Detyothin S (2012) Production and characterization of thermoplastic cassava starch, functionalized poly(lactic acid), and their reactive compatibilized blends. Michigan State University, East LansingGoogle Scholar
  35. 35.
    Enrione J, Osorio F, Pedreschi F, Hill S (2010) Food Bioprocess Tech 3:791–796Google Scholar
  36. 36.
    He J, Wang Y, Cui S, Gao Y, Wang S (2010) Polym Bull 65:395–409Google Scholar
  37. 37.
    Yoon S-D, Chough S-H, Park H-R (2007) J Appl Polym Sci 106:2485–2493Google Scholar
  38. 38.
    Krochta JM, De-Mulder CLC (1997) Food Technol 51:61–74Google Scholar
  39. 39.
    Almenar E, Auras R (eds) (2010) Permeation, sorption, and diffusion in poly(lactic acid). Poly(lactic acid). Wiley, New YorkGoogle Scholar
  40. 40.
    Gaudin S, Lourdin D, Forssell PM, Colonna P (2000) Carbohyd Polym 43:33–37Google Scholar
  41. 41.
    Forssell P, Lahtinen R, Lahelin M, Myllärinen P (2002) Carbohyd Polym 47:125–129Google Scholar
  42. 42.
    Dias AB, Muller CMO, Larotonda FDS, Laurindo JB (2010) J Cereal Sci 51:213–219Google Scholar
  43. 43.
    Dashipour A et al (2015) Int J Biol Macromol 72:606–613Google Scholar
  44. 44.
    Dadfar SMM, Kavoosi G (2015) Polym Compos 36:145–152Google Scholar
  45. 45.
    Tongdeesoontorn W, Mauer LJ, Wongruong S, Rachtanapun P (2009) As J Food Agro-Ind 2:501–514Google Scholar
  46. 46.
    Jahit IS, Nazmi NNM, Isa MIN, Sarbon NM (2016) Int Food Res J 23:1068–1074Google Scholar
  47. 47.
    Adinugraha MP, Marseno DW, Hayadi (2005) Carbohyd Polym 62:164–169Google Scholar
  48. 48.
    Duan B, Sun P, Wang X, Yang C (2011) Starch-Stärke 63:528–535Google Scholar
  49. 49.
    Tong Q, Xiao Q, Lim L-T (2008) Food Res Int 41:1007–1014Google Scholar
  50. 50.
    Piñeros-Hernandez D, Medina-Jaramillo C, López-Córdoba A, Goyanes S (2017) Food Hydrocoll 63:488–495Google Scholar
  51. 51.
    Mohanty AK, Misra M, Hinrichsen G (2000) Macromol Mater Eng 276–277:1–24Google Scholar
  52. 52.
    Wang XY, Su JF (2014) Mater Sci Technol 30:534–539Google Scholar
  53. 53.
    Medina Jaramillo C, Gutiérrez TJ, Goyanes S, Bernal C, Famá L (2016) Carbohyd Polym 151:150–159Google Scholar
  54. 54.
    ASTM-D6400-12 (2012) Standard specification for labeling of plastics designed to be aerobically composted in municipal or industrial facilities. ASTM International, West ConshohockenGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Rungsiri Suriyatem
    • 1
  • Rafael A. Auras
    • 2
  • Pornchai Rachtanapun
    • 3
    • 4
    Email author
  1. 1.Division of Food Science and Technology, Faculty of Agro-IndustryChiang Mai UniversityChiang MaiThailand
  2. 2.School of PackagingMichigan State UniversityEast LansingUSA
  3. 3.Division of Packaging Technology, Faculty of Agro-IndustryChiang Mai UniversityChiang MaiThailand
  4. 4.Center of Excellence in Materials Science and TechnologyChiang Mai UniversityChiang MaiThailand

Personalised recommendations