Advertisement

Characterization and Properties of High Amylose Mung Bean Starch Biodegradable Films Cross-linked with Malic Acid or Succinic Acid

  • Naruenart Thessrimuang
  • Jutarat Prachayawarakorn
Original Paper
  • 22 Downloads

Abstract

Because of weak mechanical and highly hydrophilic properties of starch, various applications for starch have been limited. In this study, mung bean starch (MBS), one type of high amylose starch, was chosen for its potential film forming biopolymers. MBS films were prepared and modified by different types and contents of natural di-carboxylic acids, i.e. malic acid (MA) and succinic acid (SA) with different acidity and chemical structures. It was found from FTIR spectra that the extra peak position of 1700 cm−1 were observed, the evidence of ester group formation for MA- or SA- modified MBS films. The incorporation of MA or SA into MBS film also caused the decrease in degree of crystallinity, as confirmed by XRD technique. Additionally, the maximum strain at maximum load was highly improved with the addition of 30% MA or SA. Moreover, swelling power and water vapor permeability (WVP) of MBS film modified by SA were lower than those by MA. Morphology, biodegradability and thermal property of different acid-modified MBS films were also investigated.

Keywords

Cross-linked starch Modified starch Mung bean starch 

Notes

Acknowledgements

The authors express their sincere appreciation to KMITL Research Fund (Grant No. KREF 046108) for supporting the study financially.

References

  1. 1.
    Ketkaew S, Kasemsiri P, Hiziroglu S, Mongkolthanaruk W, Wannasutta R, Pongsa U, Chindaprasirt P (2018) J Polym Environ 26:311–318CrossRefGoogle Scholar
  2. 2.
    Ma X, Chang PR, Yu J, Stumborg M (2009) Carbohydr Polym 75:1–8CrossRefGoogle Scholar
  3. 3.
    Hoover R, Li YX, Hynes G, Senanayake N (1997) Food Hydrocol 4:401–408CrossRefGoogle Scholar
  4. 4.
    Shen X, Shang W, Strappe P, Chen L, Li X, Zhou Z (2018) Food Hydrocol 77:40–48CrossRefGoogle Scholar
  5. 5.
    Bae HJ, Cha DS, Whiteside WS, Park HJ (2008) Food Chem 106:96–105CrossRefGoogle Scholar
  6. 6.
    Rompothi O, Pradipasena P, Tananuwong K, Somwangthanaroj A, Janjarasskul T (2017) Carbohydr Polym 157:748–756CrossRefGoogle Scholar
  7. 7.
    Ghaffar AMA, Ali HE, Nasef SM, El-Bialy HA (2018) J Polym Environ 26:3226–3236CrossRefGoogle Scholar
  8. 8.
    Olivato JB, Grossmann MVE, Bilck AP, Yamashita F (2012) Carbohydr Polym 90:159–164CrossRefGoogle Scholar
  9. 9.
    Dastidar TG, Netravali AN (2012) Carbohydr Polym 90:1620–1628CrossRefGoogle Scholar
  10. 10.
    Sun S, Liu P, Ji N, Hou H, Dong H (2018) Food Hydrocol 77:964–975CrossRefGoogle Scholar
  11. 11.
    Gilfillan WN, Doherty WOS (2016) Carbohydr Polym 141:60–67CrossRefGoogle Scholar
  12. 12.
    Yoon SD, Chough SH, Park HR (2005) Appl Polym Sci 100:3733–3740CrossRefGoogle Scholar
  13. 13.
    Shen L, Xu H, Kong L, Yang Y (2015) Polym Environ 23:588–594CrossRefGoogle Scholar
  14. 14.
    Majzoobi M, Beparva P, Farahnaky A, Badii F (2014) Starch/Stärke 66:491–495CrossRefGoogle Scholar
  15. 15.
    Menzel C, Olsson E, Plivelic TS, Andersson R, Johansson C, Kuktaite R, Järnström L, Koch K (2013) Carbohydr Polym 96:270–276CrossRefGoogle Scholar
  16. 16.
  17. 17.
    Wikipedia, Succinic acid. https://en.wikipedia.org/wiki/Succinic_ acid
  18. 18.
    Chang FF, He X, Huang Q (2013) J Cereal Sci 58:89–95CrossRefGoogle Scholar
  19. 19.
    Dai H, Chang PR, Yu J, Geng F, Ma X (2010) Carbohydr Polym 80:139–144CrossRefGoogle Scholar
  20. 20.
    Menzel C, Seisenbaeva G, Agback P, Gällstedt M, Boldizar A, Koch K (2017) Carbohydr Polym 172:365–373CrossRefGoogle Scholar
  21. 21.
    Liu J, Wang B, Lin L, Zhang J, Liu W, Xie J, Ding Y (2014) Food Hydrocol 36:45–52CrossRefGoogle Scholar
  22. 22.
    Reddy N, Yang Y (2010) Food Chem 118:702–711CrossRefGoogle Scholar
  23. 23.
    Colivet J, Carvalho RA (2017) Ind Crop Prod 95:599–607CrossRefGoogle Scholar
  24. 24.
    Yoon SD (2014) J Agric Food Chem 62:1755–1764CrossRefGoogle Scholar
  25. 25.
    Riouxa B, Ispas-Szabob P, AÈõt-Kadic A, Mateescub MA, JuhaÂsza J (2002) Carbohydr Polym 50:371–378CrossRefGoogle Scholar
  26. 26.
    Seligra PG, Jaramillo CM, Famá L, Goyanes S (2016) Carbohydr Polym 138:66–74CrossRefGoogle Scholar
  27. 27.
    Bruni GP, Oliveira JP, Halal SLME, Flores WH, Gunde A, Miranda MZ, Dias ARG, Zavareze ER (2018) Starch/Stärke.  https://doi.org/10.1002/star.201700192 CrossRefGoogle Scholar
  28. 28.
    Basiak E, Lenarta A, Debeaufort F (2017) Int J Biol Macromol 98:348–356CrossRefGoogle Scholar
  29. 29.
    MatWeb material property data, Dow LDPE6821 low density polyethylene, film grade. http://www.matweb.com/reference/tensilestrength.aspx
  30. 30.
    Majeed K, AlMaadeed MAA, Zagho MM (2018) Chin J Chem Eng 26:428–435CrossRefGoogle Scholar
  31. 31.
    Wang H, Wei D, Zheng A, Xiao H (2015) Polym Degrad Stab 116:14–22CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Naruenart Thessrimuang
    • 1
  • Jutarat Prachayawarakorn
    • 1
    • 2
  1. 1.Department of Chemistry, Faculty of ScienceKing Mongkut’s Institute of Technology Ladkrabang (KMITL)BangkokThailand
  2. 2.Advanced Materials Research Unit, Faculty of ScienceKing Mongkut’s Institute of technology Ladkrabang (KMITL)BangkokThailand

Personalised recommendations