Advertisement

Journal of Polymers and the Environment

, Volume 26, Issue 9, pp 3937–3948 | Cite as

Environmentally Friendly Chitosan-g-poly(acrylic acid-co-acrylamide)/Ground Basalt Superabsorbent Composite for Agricultural Applications

  • Majd Said
  • Yomen Atassi
  • Mohammad Tally
  • Hany Khatib
Original Paper
  • 161 Downloads

Abstract

This paper investigates on the preparation of a novel eco-friendly composite hydrogel, chitosan-g-poly(acrylic acid-co-acrylamide)/ground basalt and its potential application as a soil ameliorant. Synthesis was undergone using microwave irradiation. N,N′-methylene bisacrylamide MBA was used as a cross-linker, whereas potassium peroxydisulfate KPS and N,N,N′,N′-tetramethylene diamine TEMED were used as radical initiator and reaction accelerator, respectively. The incorporation of ground basaltic rocks into the hydrogel was very beneficial: (i) It lowers the cost of the final hydrogel, (ii) It enhances the mechanical strength of the hydrogel, (iii) It boosts the maximum water absorbency of the composite, 650 g/g versus 450 g/g for the hydrogel without basalt and (iv) It promotes the thermal stability of the composite in comparison with the hydrogel alone. The prepared composite hydrogel was characterized by FTIR, X-ray diffractometer and scanning electron microscope SEM. The effects of pH and ionic strength on water absorbency were also investigated. The role of the prepared composite as a soil conditioner is performed using eggplant (Solanum melongena) as a model.

Keywords

Chitosan Superabsorbent polymers Polyacrylate Polyacrylamide Soil ameliorant Basalt 

Supplementary material

10924_2018_1269_MOESM1_ESM.docx (179 kb)
Supplementary material 1 (DOCX 178 KB)

References

  1. 1.
    Straaten P (2006) Ann Braz Acad Sci 78:731CrossRefGoogle Scholar
  2. 2.
    Magalhães M, Neto M, Bezerra J, Feitosa (2013) J Braz Chem Soc 24:304CrossRefGoogle Scholar
  3. 3.
    M.Queirós M, Bezerra J, Feitosa (2017) J Braz Chem Soc 28:2004Google Scholar
  4. 4.
    Kalaleh HA, Tally M, Atassi Y (2015) Polym Sci Ser B 57:750CrossRefGoogle Scholar
  5. 5.
    Puoci F, Iemma F, Spizzirri UG, Girillo G, Curcio M, Picci N (2008) Am J Agric Biol Sci 3:299CrossRefGoogle Scholar
  6. 6.
    Dubrovskii SA, Afanas’eva MV, Lagutina MA, Kazanskii KS (1990) Polym Bull 24:107CrossRefGoogle Scholar
  7. 7.
    Shi Y, Xue Z, Wang X, Wang L, Wang A (2013) Polym Bull 70:1163CrossRefGoogle Scholar
  8. 8.
    Cheng W, Hu X, Xie J, Zhao Y (2017) Fuel 210:826CrossRefGoogle Scholar
  9. 9.
    Ekebafe LO, Ogbeifun DE, Okieimen FE (2011) Biokemistri 23:81Google Scholar
  10. 10.
    Raju KM, Raju P, Mohan YM (2001) J Appl Polym Sci 85:1795CrossRefGoogle Scholar
  11. 11.
    Qin S, Wu Z, Rasool A, Li C (2012) ‎J Appl Polym Sci 126:1687CrossRefGoogle Scholar
  12. 12.
    Waham L, Shahrir H, Akos I (2011) Polym Plast Technol Eng 50:1475CrossRefGoogle Scholar
  13. 13.
    Hedrick RM, Mowry DT (1952) Soil Sci 73:427CrossRefGoogle Scholar
  14. 14.
    Tally M, Atassi Y (2016) Polym Bull 22:1Google Scholar
  15. 15.
    Abd El-Rehim HA (2006) J Appl Polym Sci 101:3572CrossRefGoogle Scholar
  16. 16.
    He G, Ke W, Chen X, Kong Y, Zheng H, Yin Y, Cai W (2017) React Funct Polym 111:14CrossRefGoogle Scholar
  17. 17.
    Li A, Liu R, Wang A (2005) ‎J Appl Polym Sci 98:1351CrossRefGoogle Scholar
  18. 18.
    Li A, Liu R, Wang A (2017) R Soc Open Sci 4:170829CrossRefGoogle Scholar
  19. 19.
    Liu Y, Zheng Y, Wang A (2010) J Environ Sci 22:486CrossRefGoogle Scholar
  20. 20.
    Zhang J, Wang Q, Wang A (2007) Carbohydr Polym 68:367CrossRefGoogle Scholar
  21. 21.
    Zhang J, Wang L, Wang A (2007) Ind Eng Chem Res 46:2497CrossRefGoogle Scholar
  22. 22.
    Barak P, Chen Y, Singer A (1983) Plant Soil 73:155CrossRefGoogle Scholar
  23. 23.
    Leonardos OH, Fyfe WS, Kronberg BI (1987) Chem Geol 60:361CrossRefGoogle Scholar
  24. 24.
    Von Fragstein P, Pertl W, Vogtmann H (1988) J Plant Nutr Soil Sci 151:141Google Scholar
  25. 25.
    Hamed F, Ozogul J, Regenstein (2016) Trends Food Sci Technol 48:40CrossRefGoogle Scholar
  26. 26.
    Zohuriaan-Mehr MJ, Kabiri K (2008) J Iran Polym 17:451Google Scholar
  27. 27.
    El-Sayed M, Sorour M, Abdelmoneem N, Talaat H, Shalaan H, Elmarsafy S (2011) J World Appl Sci 13:360Google Scholar
  28. 28.
    Ghasemzadeh H, Ghanaat F (2014) J Polym Res 21:355CrossRefGoogle Scholar
  29. 29.
    Ferfera-harrar H, Aiouaz N, Dairi N, Hadj-Hamou A (2014) J Appl Polym Sci 39747:1Google Scholar
  30. 30.
    Rashidzadeh A, Olad A, Salari D, Reyhanitabar A (2014) J Polym Res 21:344CrossRefGoogle Scholar
  31. 31.
    Huang M, Shen X, Sheng Y, Fang Y (2005) Int J Biol Macromol 36:98CrossRefPubMedGoogle Scholar
  32. 32.
    Bao Y, Ma J, Li N (2011) J Carbohydr Polym 84:76CrossRefGoogle Scholar
  33. 33.
    Feng I, Guo X, Qiu K (1988) MakromolekulChem 189:77CrossRefGoogle Scholar
  34. 34.
    Gharekhani H, Olad A, Mirmohseni A, Bybordi A (2017) Carbohydr Polym 168:1CrossRefPubMedGoogle Scholar
  35. 35.
    Anda M, Shamshuddin J, Fauziah C, Omar SR (2009) Soil Sci 174:264CrossRefGoogle Scholar
  36. 36.
    Wang L, Zhang J, Wang A (2008) Colloids Surf A Physicochem Eng Asp 322:47CrossRefGoogle Scholar
  37. 37.
    El-Shahate M, Saraya I (2014) Constr Build Mater 72:104CrossRefGoogle Scholar
  38. 38.
    Spagnol FHA, Rodrigues AGVC., Neto AGB, Pereira AR, Fajardo E, Radovanovic AF, Rubira EC, Muniz (2012) J Eur Polym 48:454CrossRefGoogle Scholar
  39. 39.
    Kalaleh HA, Tally M, Atassi Y (2013) Res Rev Polym 4:145Google Scholar
  40. 40.
    Mahdavinia GR, Pourjavadi A, Hosseinzadeh H, Zohuriaan MJ (2004) J Eur Polym 40:1399CrossRefGoogle Scholar
  41. 41.
    Kumar S, Koh J (2012) Int J Mol Sci 13:6102CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Bashir S, Teo Y, Naeem S, Ramesh S, Ramesh K (2017) PLoS ONE.  https://doi.org/10.1371/journal.pone.0179250 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Zhang Q, Hu XM, Wu MY, Zhao Y, Yu C (2018) J Appl Polym Sci 135:46460CrossRefGoogle Scholar
  44. 44.
    Lim DW, Yoon KJ, Ko SW (2000) J Appl Polym Sci 78:2525CrossRefGoogle Scholar
  45. 45.
    Ganji F, Vasheghani-Farahani S, Vasheghani-Farahani E (2010) Iran Polym J 19:375Google Scholar
  46. 46.
    Kabiri K, Omidian H, Hashemi SA, Zohuriaan-Mehr MJ (2003) Euro Polym J 39:1341CrossRefGoogle Scholar
  47. 47.
    Kalaleh H, Atassi A (2018) J Mater Environ Sci 9:955Google Scholar
  48. 48.
    Hu ZX, Hu XM, Cheng WM, Lu W (2018) High Perform Polym.  https://doi.org/10.1177/0954008318758489 CrossRefGoogle Scholar
  49. 49.
    Lanthong P, Kiatkamjornwong S (2006) Carbodydr Polym 66:229CrossRefGoogle Scholar
  50. 50.
    Schott H (1992) J Macromol Sci 31:1CrossRefGoogle Scholar
  51. 51.
    Wang, Wang L, Zhang J, Wang A (2011) Desalination 266:33CrossRefGoogle Scholar
  52. 52.
    Hosseinzadeh H, Sadeghzadeh M, Badazadeh M (2011) J Biomater Nanobiotechnol 2:311CrossRefGoogle Scholar
  53. 53.
    Wang W, Wang A (2009) J Appl Polym Sci 112:2102CrossRefGoogle Scholar
  54. 54.
    Wen P, Wu Z, He Y, Ye B, Han Y, Wang J, Guan X (2016) ACS Sustain Chem Eng 4:6572CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Materials Sciences, Department of Applied PhysicsHigher Institute for Applied Sciences and TechnologyDamascusSyria

Personalised recommendations