Advertisement

Journal of Polymers and the Environment

, Volume 26, Issue 9, pp 3834–3847 | Cite as

A Study of Rapeseed Oil-Based Polyol Substitution with Bio-based Products to Obtain Dimensionally and Structurally Stable Rigid Polyurethane Foam

  • Agnė Kairytė
  • Saulius Vaitkus
  • Sigitas Vėjelis
  • Ina Pundienė
Original Paper
  • 106 Downloads

Abstract

Water-blown polyurethane foams from low functionality polyols are characterized by intensive shrinkage, high density, post blowing, and longer demold time. These drawbacks can be partially, or fully, eliminated by varying chemical parameters of the main components. Therefore, an aliphatic polyester rapeseed oil-based polyol was modified with bio-based glycerin (RGL) and propylene glycol (RPG). The impact of the molecular weight and hydroxyl value of the blends were evaluated by testing obtained bio-based polyurethane foams. Compared to RGL-based foams, RPG-modified foams had the strictest standard (EN 13165) requirements regarding dimensional stability. These foams demonstrated a reduced apparent density from 12.6 to 20.8%, a faster foam curing capability by 47%, and the shortest demold time due to the open cell structure. The RGL modified foams had better cross-linking capability, slower ageing of thermal conductivity, and an increased compressive strength of 82.7% compared to the non-modified foam.

Keywords

Bio-polymers Rapeseed polyol Polyurethane foam Renewable resources Material testing 

References

  1. 1.
    Furtwengler P, Perrin R, Redl A, Avérous L (2017) Synthesis and characterization of polyurethane foams derived of fully renewable polyester polyols from sorbitol. Eur Polym J 97:319–327CrossRefGoogle Scholar
  2. 2.
    Członka S, Bertino MF, Strzelec K (2018) Rigid polyurethane foams reinforced with industrial potato protein. Polym Test 68:135–145CrossRefGoogle Scholar
  3. 3.
    Li S, Bouzidi L, Narine SS (2017) Polyols from self-metathesis-generated oligomers of soybean oil and their polyurethane foams. Eur Polym J 93:232–245CrossRefGoogle Scholar
  4. 4.
    Kurańska M, Prociak A (2016) The influence of rapeseed oil-based polyols on foaming process of rigid polyurethane foams. Ind Crops Prod 89:182–187CrossRefGoogle Scholar
  5. 5.
    Huang X, De Hoop CF, Xie J, Wu Q, Boldor D, Qi J (2018) High bio-content polyurethane (PU) foam made from bio-polyol and cellulose nanocrystals (CNCs) via microwave liquefaction. Mater Des 138:11–20CrossRefGoogle Scholar
  6. 6.
    Ding H, Huang K, Li S, Xu L, Xia J, Li M (2017) Synthesis of a novel phosphorus and nitrogen-containing bio-based polyol and its application in flame retardant polyurethane foam. J Anal Appl Pyrol 128:102–113CrossRefGoogle Scholar
  7. 7.
    Fourati Y, Hassen RB, Bayramoǧlu G, Boufi S (2017) A one step route synthesis of polyurethane network from epoxidized rapeseed oil. Prog Org Coat 105:48–55CrossRefGoogle Scholar
  8. 8.
    Fridrihsone A, Romagnoli F, Cabulis U (2018) Life cycle inventory for winter and spring rapeseed production in Northern Europe. J Clean Prod 177:79–88CrossRefGoogle Scholar
  9. 9.
    Zhang H, Fang WZ, Li YM, Tao WQ (2017) Experimental study of the thermal conductivity of polyurethane foams. Appl Therm Eng 115:528–538CrossRefGoogle Scholar
  10. 10.
    Amaral C, Vicente R, Ferreira VM, Silva T (2017) Polyurethane foams with microencapsulated phase change material: comparative analysis of thermal conductivity characterization approaches. Energy Build 153:392–402CrossRefGoogle Scholar
  11. 11.
    Park SB, Choi SW, Kim JH, Bang CS, Lee JM (2016) Effect of the blowing agent on the low-temperature mechanical properties of CO2- and HFC-245fa-blown glass-fiber-reinforced polyurethane foams. Compos B 93:317–327CrossRefGoogle Scholar
  12. 12.
    Ng WS, Lee CS, Chuah CH, Cheng SF (2017) Preparation and modification of water-blown porous biodegradable polyurethane foams with palm oil-based polyester polyol. Ind Crops Prod 97:65–78CrossRefGoogle Scholar
  13. 13.
    Luo X, Mohanty A, Misra M (2013) Lignin as a reactive reinforcing filler for water-blown rigid biofoam composites from soy oil-based polyurethane. Ind Crops Prod 47:13–19CrossRefGoogle Scholar
  14. 14.
    Kairytė A, Vėjelis S (2015) Evaluation of forming mixture composition impact on properties of water blown rigid polyurethane (PUR) foam from rapeseed oil polyol. Ind Crops Prod 66:210–215CrossRefGoogle Scholar
  15. 15.
    Otto GP, Moisés MP, Carvalho G, Rinaldi AW, Garcia JC, Radovanovic E, Fávaro SL (2017) Mechanical properties of a polyurethane hybrid composite with natural lignocellulosic fibers. Compos B 110:459–465CrossRefGoogle Scholar
  16. 16.
    Lei L, Zhong L, Lin X, Li Y, Xia Z (2014) Synthesis and characterization of waterborne polyurethane dispersions with different chain extenders for potential application in waterborne ink. Chem Eng J 253:518–525CrossRefGoogle Scholar
  17. 17.
    Kairytė A, Kirpluks M, Ivdre A, Cabulis U, Vaitkus S, Pundienė I (2018) Cleaner production of polyurethane foam: replacement of conventional raw materials, assessment of fire resistance an environmental impact. J Clean Prod 183:760–771CrossRefGoogle Scholar
  18. 18.
    Xiaobin L, Hongbin C, Yi Z (2008) Properties of water blown rigid polyurethane foams with different functionality. J Wuhan Univ Technol Mater Sci Ed 23(1):125–129CrossRefGoogle Scholar
  19. 19.
    Zhang X, Zheng J, Fang H, Zhang Y, Bai S, He G (2018) High dimensional stability and low viscous response solid propellant binder based on graphene oxide nanosheets and dual cross-linked polyurethane. Compos Sci Technol 161:124–134CrossRefGoogle Scholar
  20. 20.
    Guptill DM, Brutman JP, Hoye TR (2017) Thermoplastic polyurethanes from β-methyl-δ-valerolactone-derived amidodiol chain extenders. Polymer 111:252–257CrossRefGoogle Scholar
  21. 21.
    Chen L, Wang X, Jia Z, Luo Y, Jia D (2015) Use of precipitated silica with silanol groups as an inorganic chain extender in polyurethane. Mater Des 87:324–330CrossRefGoogle Scholar
  22. 22.
    Pielichowska K, Nowak M, Szatkowski P, Macherzyńska B (2016) The influence of chain extender on properties of polyurethane-based phase change materials modified with graphene. Appl Energy 162:1024–1033CrossRefGoogle Scholar
  23. 23.
    Formela K, Hejna A, Zedler Ł, Przybysz M, Ryl J, Saeb MR, Piszczyk Ł (2017) Structural, thermal and physico-mechanical properties of polyurethane/brewers’ spent grain composite foams modified with ground tire rubber. Ind Crops Prod 108:844–852CrossRefGoogle Scholar
  24. 24.
    Hejna A, Kirpluks M, Kosmela P, Cabulis U, Haponiuk J, Piszczyk Ł (2017) The influence of crude glycerol and castor oil-based polyol on the structure and performance of rigid polyurethane-polyisocyanurate foams. Ind Crops Prod 95:113–125CrossRefGoogle Scholar
  25. 25.
    Prociak A, Kurańska M, Cabulis U, Kirpluks M (2017) Rapeseed oil as main component in synthesis of bio-polyurethane-polyisocyanurate porous materials modified with carbon fibers. Polym Test 59:478–486CrossRefGoogle Scholar
  26. 26.
    Lin Y, Hsieh S, Huff HE (1997) Water-blown flexible polyurethane foam extended with biomass materials. J Appl Polym Sci 65(4):695–703CrossRefGoogle Scholar
  27. 27.
    Rashmi BJ, Rusu D, Prashantha K, Lacrampe MF, Krawcak P (2013) Development of bio-based thermoplastic polyurethane formulations using corn-derived chain extender for reactive rotational molding. Express Polym Lett 7(10):852–862CrossRefGoogle Scholar
  28. 28.
    Datta J, Głowińska E (2014) Effect of hydroxylated soybean oil and bio-based propane-diol on the structure and thermal properties of synthesized bio-polyurethanes. Ind Crops Prod 61:84–91CrossRefGoogle Scholar
  29. 29.
    Kwon OJ, Oh ST, Lee SD, Lee NR, Shin CH, Park JS (2007) Hydrophilic and flexible polyurethane foams using sodium alginate as polyol: effects of PEG molecular weight and cross-linking agent content on water absorbency. Fibers Polym 8:347–355CrossRefGoogle Scholar
  30. 30.
    Rao BN, Yadav PJP, Malkappa K, Jana T, Sastry PU (2015) Triazine functionalized hydroxyl terminated polybutadiene polyurethane: influence of triazine structure. Polymer 77:323–333CrossRefGoogle Scholar
  31. 31.
    Sokal RR, Rohlf FJ (1998) Biometry. The principles and practice of statistics in biological research, W. H. Freeman and Company, New York, p 887Google Scholar
  32. 32.
    Chetyrkin Y (1977) Statistical methods of prediction. Statistika, Moscow, p 200Google Scholar
  33. 33.
    Gómez-Fernández S, Ugarte L, Calco-Correas T, Peña-Rodríguez C, Corcuera MA, Eceiza A (2017) Properties of flexible polyurethane foams containing isocyanate functionalized kraft lignin. Ind Crops Prod 100:51–64CrossRefGoogle Scholar
  34. 34.
    Lim H, Kim SH, Kim BK (2008) Effects of the hydroxyl value of polyol in rigid polyurethane foams. Polym Adv Technol 19:1729–1734CrossRefGoogle Scholar
  35. 35.
    Sonnenschein MF (2015) Polyurethanes: science, technology, markets, and trends, Wiley, Midland, p 432Google Scholar
  36. 36.
    Hejna A, Kosmela P, Klein M, Gosz K, Formela K, Haponiuk J, Piszczyk Ł (2018) Rheological properties, oxidative and thermal stability, and potential application of biopolyols prepared via two-step process from crude glycerol. Polym Degrad Stab 152:29–42CrossRefGoogle Scholar
  37. 37.
    Santiago-Calvo M, Blasco V, Ruiz C, París R, Villafañe F, Rodríguez-Pérez M (2017) Synthesis, characterization and physical properties of rigid polyurethane foams prepared with poly(propylene oxide) polyols containing graphene oxide. Eur Polym J 97:230–240CrossRefGoogle Scholar
  38. 38.
    Sheikhy H, Shahidzadeh M, Ramezanzadech B, Noroozi F (2013) Studying the effects of chain extenders chemical structure on the adhesion and mechanical properties of a polyurethane adhesive. J Ind Eng Chem 19:1949–1955CrossRefGoogle Scholar
  39. 39.
    Shoaib M, Bahadur A, Iqbal S, Rahman MSU, Ahmed S, Shabir G, Javaid MA (2017) Relationship of hard segment concentration in polyurethane-urea elastomers with mechanical, thermal, drug release properties. J Drug Deliv Sci Technol 37:88–96CrossRefGoogle Scholar
  40. 40.
    Nazeran N, Moghaddas J (2017) Synthesis and characterization of silica aerogel reinforced rigid polyurethane foam for thermal insulation application. J Non-Cryst Solids 461:1–11CrossRefGoogle Scholar
  41. 41.
    Park JH, Minn KS, Lee HR, Yang SH, Yu CB, Pak SY, Oh CS, Song YS, Kang YJ, Youn JR (2017) Cell openness manipulation of low density polyurethane foam for efficient sound absorption. J Sound Vib 406:224–236CrossRefGoogle Scholar
  42. 42.
    Xu M, Yan H, He Q, Wan C, Liu T, Zhao L, Park CB (2017) Chain extension of polyamide 6 using multifunctional chain extenders and reactive extrusion for melt foaming. Eur Polym J 96:210–220CrossRefGoogle Scholar
  43. 43.
    Hakim AA, Nassar M, Emam A, Sultan M (2011) Preparation and characterization of rigid polyurethane foam prepared from sugar-cane bagasse polyol. Mater Chem Phys 129:301–307CrossRefGoogle Scholar
  44. 44.
    Singh H, Jain AK (2007) Effect of chemical and physical blowing agents on the density, cell morphology and flammability of rigid polyurethane foam. In: Polyurethane, Technical Conference, OrlandoGoogle Scholar
  45. 45.
    Tan S, Abraham T, Ference D, Macosko CW (2011) Rigid polyurethane foams from a soybean oil-based polyol. Polymer 52:2840–2846CrossRefGoogle Scholar
  46. 46.
    Semsarzadeh MA, Sadeghi M, Barikani M (2008) Effect of chain extender length on gas permeation properties of polyurethane membranes. Iran Polym J 17:431–440Google Scholar
  47. 47.
    Estravís S, Tirado-Mediavilla J, Santiago-Calvo M, Ruiz-Herrero JL, Villafañe F, Rodríguez-Pérez M (2016) Rigid polyurethane foams with infused nanoclays: relationship between cellular structure and thermal conductivity. Eur Polym J 80:1–15CrossRefGoogle Scholar
  48. 48.
    Septevani AA, Evans DAC, Chaleat C, Martin DJ, Annamalai PK (2015) A systematic study substituting polyether polyol with palm kernel oil based polyester polyol in rigid polyurethane foam. Ind Crops Prod 66:16–26CrossRefGoogle Scholar
  49. 49.
    Marcovich NE, Kurańska M, Prociak A, Malewska E, Kulpa K (2017) Open cell semi-rigid polyurethane foams synthesized using palm oil-based bio-polyol. Ind Crops Prod 102:88–96CrossRefGoogle Scholar
  50. 50.
    Hejna A, Kosmela P, Kirpluks M, Cabulis U, Klein M, Haponiuk J, Piszczyk Ł (2018) Structure, mechanical, thermal and fire behavior assessments of environmentally friendly crude glycerol-based rigid polyisocyanurate foams. J Polym Environ 26:1854–1868CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Agnė Kairytė
    • 1
  • Saulius Vaitkus
    • 1
  • Sigitas Vėjelis
    • 1
  • Ina Pundienė
    • 2
  1. 1.Laboratory of Thermal Insulating Materials and Acoustics, Institute of Building Materials, Faculty of Civil EngineeringVilnius Gediminas Technical UniversityVilniusLithuania
  2. 2.Laboratory of Concrete Technology, Institute of Building Materials, Faculty of Civil EngineeringVilnius Gediminas Technical UniversityVilniusLithuania

Personalised recommendations