Advertisement

Journal of Polymers and the Environment

, Volume 26, Issue 9, pp 3824–3833 | Cite as

Optimization and Characterisation of Thermo Stable Exopolysaccharide Produced from Bacillus licheniformis WSF-1 Strain

  • S. Jenny Angel
  • G. Vidyadharani
  • S. Santhosh
  • R. Dhandapani
Original Paper
  • 32 Downloads

Abstract

Bacillus licheniformis WSF-1 strain isolated from sugar distillery plant was capable of producing a maximum amount of EPS (1.24 g/mL) and dry biomass (3.25 g/mL) respectively. Certain factors like inoculum age and carbon source was standardised in view of obtaining high EPS yield. In this study, 48-h-old culture was identified as the optimum inoculum age for EPS production. In fermentation, as carbon source plays a major contributing factor that influences the EPS production, optimum carbon source was determined by studying the effect of different carbohydrates such as 12% of glucose, sucrose, lactose, maltose, xylose and fructose on EPS production. The best carbon source was identified as sucrose at a concentration of 25% producing 2.9 g/mL of exopolysaccharide. The polysaccharides were hydrolysed and the monomeric components were determined as fructose and glucose by HPLC, followed by FT-IR analysis. The thermal study revealed that the EPS can withstand high temperature of 219.4 °C and had high glass transition temperature of 150.6 °C. These features indicate the thermo stable nature of the exopolysaccharide which can be used for various industrial applications.

Keywords

Exopolysaccharide Bacillus Thermo stable Polymer Carbon source FTIR SEM 

Notes

Funding

This work was supported by the University Grants Commission-Maulana Azad National Fellowship for minority students with Reference Number F1-17.1/2011/MANF-CHR-TAM-562/(SA-III/Wesite) dated 2nd Jan 2012. The authors would like to thank Periyar University for providing sophisticated laboratory facilities to carry out this research work. The authors also sincerely show gratitude to DST-FIST, New Delhi, India for granting sophisticated instrumentation with Reference No. SR/FST/LSI – 640/2015 (C) dated 30/5/2016.

Compliance with Ethical Standards

Conflict of interest

All authors declare that they have no conflict of interest.

References

  1. 1.
    Radchenkova N, Tomova A, Kambourova M (2011) Biotechnol Biotechnol 438:77–79CrossRefGoogle Scholar
  2. 2.
    Küçüka SS, Sık F, Enigun Ò, Nicolaus B, Toksoy E, Öner MA, Yükselen (2011) Bioresour Technol 102:1788–1794CrossRefGoogle Scholar
  3. 3.
    Doco T, Wieruszescki JM, Fournet B (1990) Carbohydr Res 198:313–321CrossRefGoogle Scholar
  4. 4.
    Barud HS, Araújo AM, Santos DB Jr, Assunção RMN, Meireles CS, Crequeira DS (2008) Thermochim Acta 471:61–69CrossRefGoogle Scholar
  5. 5.
    Legnani C, Vilani C, Calil VL, Barud HS, Quirino WQ, Achete CA (2008) Thin Solid Films 517:1016–1020CrossRefGoogle Scholar
  6. 6.
    McIntosh M, Stone BA, Stanisich VA (2005) Appl Microbiol Biotechnol 68:163–173CrossRefGoogle Scholar
  7. 7.
    Singh RS, Gaganpreet KS, Kennedy JF (2008) Carbohydr Polym 73:515–531CrossRefGoogle Scholar
  8. 8.
    Banik RM, Santhiagu A, Upadhyay SN (2007) Bioresour Technol 98:792–797CrossRefGoogle Scholar
  9. 9.
    Adriana LM, Teresa P, Bernadette I, Daniela G, Concetta B, Giuseppe (2006) Int Immunopharmacol 6:8–13CrossRefGoogle Scholar
  10. 10.
    Ilario F, Donato PD, Vincenza M, Barbara N, Annarita P (2014) Mar Drugs 12:3005–3024CrossRefGoogle Scholar
  11. 11.
    Tinsley-Bown M, Fretwell R, Dowsett AB, Davis SL, Farrar GH (2000) J Control Release 66:229–241CrossRefGoogle Scholar
  12. 12.
    Petersson L, Kvien I, Oksman K (2007) Compos Sci Technol 67:2535–2544CrossRefGoogle Scholar
  13. 13.
    Sutherland W (1998) Trends Biotechnol 16:41–46CrossRefGoogle Scholar
  14. 14.
    Degryse E, Glansdorff N, Pierard A (1978) Arch Microbiol 117:189–196CrossRefGoogle Scholar
  15. 15.
    Ewald BM, Denner Susanne P, Peter K, Edward Moore RB, Wolf-Rainer A, Hans-Jurgen B, Gerhard W, Werner L (2001) Int J Syst Evol Microbiol 51:827–841CrossRefGoogle Scholar
  16. 16.
    Montersino S, Prieto A, Muñoz R, De Las Rivas B (2008) J Food Sci 73(4):196–199CrossRefGoogle Scholar
  17. 17.
    Stacy Kimmel F, Robert Roberts R, Gregory Ziegler (1998) Appl Environ Microbiol 64(2):659–664Google Scholar
  18. 18.
    Roberta F, Mirna Januaria LG, Nelma R, Segini B (2008) World J Microbiol Biotechnol 24(7):937–943CrossRefGoogle Scholar
  19. 19.
    Albalasmeh AA, Berhe T, Ghezzehei (2013) Carbohydr Polym 97(2):253–261CrossRefGoogle Scholar
  20. 20.
    Yongqin J, George Cody D, Anna Harding K, Paul W, Matthew S, Korin Wheeler E, Jillian Banfield F, Michael Thelen P (2010) Appl Environ Microbiol 76(9):2916–2922CrossRefGoogle Scholar
  21. 21.
    Belma A, Zehra NY, Nazime M (2005) World J Microbiol Biotechnol 21:673–677CrossRefGoogle Scholar
  22. 22.
    Murat Y, Gokcen Yuvali C, Belma A, Dilsad O (2011) J Polym Environ.  https://doi.org/10.1007/s10924-011-0358-5 Google Scholar
  23. 23.
    Champagne CP, Gardner NJ, Lacroix C (2007) Electron J Biotechnol 10(2):211–220CrossRefGoogle Scholar
  24. 24.
    Pham PL, Dupont I, Roy D, Lapointe G, Cerning J (2000) Appl Environ Microbiol 66(6):2302–2310CrossRefGoogle Scholar
  25. 25.
    Vimlesh Y, Siddalingaiya GP, Alok J, Amrita P (2011) J Biotechnol Bioinform Bioeng 1(4):415–421Google Scholar
  26. 26.
    Baimark Y, Srihanam P, Srisuwan Y, Phinyocheep P (2010) J Appl Polym 118(2):1127–1133Google Scholar
  27. 27.
    Cynthia CE, D’Avila JA, Ricardo MR, Jarbas FSF, Roberto GS, Ricardo (2012) J Biomater Nanobiotechnol 3:208–225CrossRefGoogle Scholar
  28. 28.
    Tzong-Ming W, Shih-Hsiang Lin L (2006) J Polym Sci A Polym Chem 44(21):6449–6457CrossRefGoogle Scholar
  29. 29.
    Lobas D, Schumpe S, Deckwer WD (1992) Appl Microbiol Biotechnol 37:411–415CrossRefGoogle Scholar
  30. 30.
    Kanari B, Banik BB, Upadhyay SN (2002) Appl Biochem Biotechnol 102:129–139CrossRefGoogle Scholar
  31. 31.
    Sutherland W (1982) Adv Appl Microbiol 23:79–150Google Scholar
  32. 32.
    Spanò C, Gugliandolo V, Lentini TL, Maugeri G, Anzelmo A, Poli B, Nicolaus (2013) Curr Microbiol 67:21–29CrossRefGoogle Scholar
  33. 33.
    Mahmoud IJ (2014) Curr Microbiol Appl Sci 3(4):876–886Google Scholar
  34. 34.
    Manca M, Lama L, Importar E, Esposito A, Gambacorta B, Nicolaus (1996) Atmos Environ 44:1919–1926Google Scholar
  35. 35.
    Yun UJ, Park HD (2003) Lett Appl Microbiol 36:282–287CrossRefGoogle Scholar
  36. 36.
    Vuyst D, Vanderveken F, Van de ven S, Degeest B (1998) J Appl Microbiol 84(6):1059–1068CrossRefGoogle Scholar
  37. 37.
    Cheirsilp B, Shimizu H, Shioya S (2003) J Biotechnol 100(1):43–53CrossRefGoogle Scholar
  38. 38.
    Korakli M, Pavlovic M, Ganzle M, Vogel Rudi F (2003) Appl Environ Microbiol 69(4):2073–2079CrossRefGoogle Scholar
  39. 39.
    Abdul Razack S, Vijayagopal V, Viruthagiri T (2013) Int J ChemTech Res 5(5):2221–2228Google Scholar
  40. 40.
    Wang X, Xu P, Yuan Y, Yang C (2006) Appl Environ Microbiol 72(5):3367–3374CrossRefGoogle Scholar
  41. 41.
    Larpin S, Sauvageot N, Pichereau V, Laplace J, Auffray Y (2002) Int J Food Microbiol 77:1–9CrossRefGoogle Scholar
  42. 42.
    Wang X, Zhao Z, Tian H, Congcong Y, Yawei Z, Yang (2015) Pol J Food Nutr Sci 65(4):269–279Google Scholar
  43. 43.
    Christophe R, Vitor Alves D, Filomena F, Maria Rei AM (2015) Front Microbiol 6:288Google Scholar
  44. 44.
    Bramhachari PV, Kishor PB, Ramadevi R, Kumar R, Rao BR, Dubey SK (2007) J Microbiol Biotechnol 17:44–51Google Scholar
  45. 45.
    Kucukasik F, Kazak H, Guney D, Finore I, Poli A, Yenigun Ò, Nicholaus B, Oner ET (2010) Appl Microbiol Biotechnol.  https://doi.org/10.1007/s00253-010-3055-8 Google Scholar
  46. 46.
    Kumar S, Mody K, Jha B (2007) J Basic Microbiol 47:103–117CrossRefGoogle Scholar
  47. 47.
    Mishra K, Kavita K, Jha B (2011) Carbohydr Polym 82:852–857CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. Jenny Angel
    • 1
  • G. Vidyadharani
    • 1
  • S. Santhosh
    • 2
  • R. Dhandapani
    • 1
  1. 1.Fermentation Technology Laboratory, Department of MicrobiologyPeriyar UniversitySalemIndia
  2. 2.Applied Microbiology Laboratory, Department of MicrobiologyPeriyar UniversitySalemIndia

Personalised recommendations