Advertisement

Journal of Polymers and the Environment

, Volume 26, Issue 9, pp 3995–4012 | Cite as

Production of Polyhydroxyalkanoates from Renewable Sources Using Bacteria

  • A. B. Sathya
  • V. Sivasubramanian
  • A. Santhiagu
  • Chitra Sebastian
  • R. Sivashankar
Review
  • 234 Downloads

Abstract

Plastics play a very important role in our daily life. They are used for various purposes. But the disposal of these petrochemical-derived plastics causes a risk to the human and marine population, wildlife and environment. Also, due to the eventual depletion of petrochemical sources, there is a need for the development of alternate sources for the production of plastics. Biodegradable polymers produced by microorganisms can be used as substitutes for conventional plastics derived from petrochemical sources since they have similarity in their properties. Polyhydroxyalkanoate (PHA) is one such biopolymer that will be accumulated inside the cells of microorganisms as granules for energy storage under limiting conditions of nutrients and high concentration of carbon. Research on the microbial production of PHA should focus on the identification of cost-effective substrates and also identification of a suitable strain of organism for production. The major focus of this review is the production of PHA from various cost-effective substrates using different bacterial species. The review also covers the biosynthetic pathway of PHA, extraction method, characterization technique, and applications of PHA in various sectors.

Keywords

Biopolymer Polyhydroxyalkanoate Renewable source Microbial production 

Notes

Acknowledgements

The authors are thankful to National Institute of Technology Calicut, India.

References

  1. 1.
    Hamieh A, Olama Z, Holail H (2013) Microbial production of polyhydroxybutyrate, a biodegradable plastic using agro-industrial waste products. Glob Adv Res J Microbiol 2:54–64Google Scholar
  2. 2.
    Rao MG, Bharathi P, Akila RM (2014) A comprehensive review on biopolymers. Sci Rev Chem Commun 4(2):61–68Google Scholar
  3. 3.
    Thompson RC, Moore CJ, Vom Saal FS, Swan SH (2009) Plastics, the environment and human health: current consensus and future trends. Philos Trans R Soc Lond Biol Sci 364(1526):2153–2166CrossRefGoogle Scholar
  4. 4.
    Babu J, Nath SB, Kodali VP (2014) Isolation, Screening and Extraction of polyhydroxybutyrate (PHB) producing bacteria from sewage sample. Int J Pharm Tech Res 6(2):850–857Google Scholar
  5. 5.
    Zhu C, Chiu S, Nakas JP, Nomura CT (2013) Bioplastics from waste glycerol derived from biodiesel industry. J Appl Polym Sci 130(1):1–3CrossRefGoogle Scholar
  6. 6.
    Nkwachukwu OI, Chima CH, Ikenna AO, Albert L (2013) Focus on potential environmental issues on plastic world towards a sustainable plastic recycling in developing countries. Int J Ind Chem 4(1):34CrossRefGoogle Scholar
  7. 7.
    Rasheed R, Latha D, Ramachandran D, Gowri GR (2013) Characterization of biopolymer producing Streptomyces parvulus, optimization of process parameters and mass production using less expensive substrates. Int J Bioassay 2(4):649–654Google Scholar
  8. 8.
    Shivakumar S (2012) Polyhydroxybutyrate (PHB) production using agro-industrial residue as substrate by bacillus. Int J Chem Tech Res 4(3):1158–1162Google Scholar
  9. 9.
    Kolybaba M, Tabil LG, Panigrahi S, Crerar WJ, Powell T, Wang B (2006) Biodegradable polymers: past, present, and future. ASABE/CSBE North Central Intersectional Meeting. American Society of Agricultural and Biological EngineersGoogle Scholar
  10. 10.
    Azapagic A, Emsley A, Hamerton L (2003) Polymers in everyday use: principles, properties and environmental effects. In Polymers: the environment and sustainable development. Wiley, Hoboken, pp 17–46CrossRefGoogle Scholar
  11. 11.
    Karak N (2012) Vegetable oil-based polymers: properties, processing and applications. Woodhead Publishing, ElsevierCrossRefGoogle Scholar
  12. 12.
    Chandra R, Rustgi R (1998) Biodegradable polymers. Prog Polym Sci 23(7):1273–1335CrossRefGoogle Scholar
  13. 13.
    Sivasubramanian V (2016) Biodegradable polymers and its recent perspectives. Environmental sustainability using green technologies. CRC Press, Boca RatonCrossRefGoogle Scholar
  14. 14.
    Babu RP, O’connor K, Seeram R (2013) Current progress on bio-based polymers and their future trends. Prog Biomater 2(1):8CrossRefGoogle Scholar
  15. 15.
    Habibi Y, Lucia LA (2012) Polysaccharide building blocks: a sustainable approach to the development of renewable biomaterials. Wiley, New YorkCrossRefGoogle Scholar
  16. 16.
    Verma ML (2010) Microbial biosynthesis of biopolymers and applications in the biopharmaceutical, biomedical and food industries. In: Proceedings of the 2010 International Conference on Biomedical Engineering and Assistive Technologies (BEATS), Jalandhar, India, pp. 1–6Google Scholar
  17. 17.
    Benerji DSN, Ayyanna C, Rajini K, Rao BS, Banerjee DRN (2010) Studies on physico-chemical and nutritional parameters for the production of ethanol from mahua flower (Madhuca indica) using saccharomyces cerevisiae—3090 through submerged fermentation (smf). J Microb Biochem Technol 2:46–50CrossRefGoogle Scholar
  18. 18.
    Santhanam A, Sasidharan S (2010) Microbial production of polyhydroxy alkanotes (PHA) from Alcaligens spp. and Pseudomonas oleovorans using different carbon sources. Afr J Biotech 9(21):3144–3150Google Scholar
  19. 19.
    Pandey P, Kumar B, Tiwari D (2010) Environmental considerations concerning the release of genetically modified organisms. ProEnvironment Promediu 3(6):381–384Google Scholar
  20. 20.
    Byrom D (1987) Polymer synthesis by microorganisms: technology and economics. Trends Biotechnol 5(9):246–250CrossRefGoogle Scholar
  21. 21.
    Madison LL, Huisman GW (1999) Metabolic engineering of poly (3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63(1):21–53PubMedPubMedCentralGoogle Scholar
  22. 22.
    Chen GQ, Wu Q (2005) Microbial production and applications of chiral hydroxyalkanoates. Appl Microbiol Biotechnol 67(5):592–599CrossRefGoogle Scholar
  23. 23.
    Ren Q, Ruth K, Thöny-Meyer L, Zinn M (2010) Enatiomerically pure hydroxycarboxylic acids: current approaches and future perspectives. Appl Microbiol Biotechnol 87(1):41–52CrossRefGoogle Scholar
  24. 24.
    Khanna S, Srivastava AK (2005) Recent advances in microbial polyhydroxyalkanoates. Process Biochem 40(2):607–619CrossRefGoogle Scholar
  25. 25.
    Okada M (2002) Chemical syntheses of biodegradable polymers. Prog Polym Sci 27(1):87–133CrossRefGoogle Scholar
  26. 26.
    Braunegg G, Lefebvre G, Genser KF (1998) Polyhydroxyalkanoates, biopolyesters from renewable resources: physiological and engineering aspects. J Biotechnol 65(2):127–161CrossRefGoogle Scholar
  27. 27.
    Avérous L, Pollet E (2012) Biodegradable polymers. In: Avérous L, Pollet E (eds) Environmental silicate nano-biocomposites. Green energy and technology. Springer, London, pp. 13–39CrossRefGoogle Scholar
  28. 28.
    Lafferty RM, Krsatko B, Korsatko W (1988) Microbial production of poly- β-hydroxybutyric acid. In: .Rehm HJ, Reed G (eds) Biotechnology. Springer VCH Weinheim, pp 136–176Google Scholar
  29. 29.
    Okon Y, Itzigsohn R (1992) Poly-β-hydroxybutyrate metabolism in Azospirillum brasilense and the ecologiocal role of PHB in the rhizosphere. FEMS Microbiol Rev 9(2–4):131–140Google Scholar
  30. 30.
    Reusch RN, Sadoff HL (1983) D-(−)-poly-beta-hydroxybutyrate in membranes of genetically competent bacteria. J Bacteriol 156(2):778–788PubMedPubMedCentralGoogle Scholar
  31. 31.
    Beijerinck MW (1888) Cultur des Bacillus radicicola aus den Knöllchen. Bot Ztg 46:740–750Google Scholar
  32. 32.
    Lemoigne M (1926) Produit de déshydratation et de polymérisation de l’acide β-oxybutyrique. Bull Soc Chim Biol 8:770–782Google Scholar
  33. 33.
    Lemos PC, Serafim LS, Reis MA (2006) Synthesis of polyhydroxyalkanoates from different short-chain fatty acids by mixed cultures submitted to aerobic dynamic feeding. J Biotechnol 122(2):226–238CrossRefGoogle Scholar
  34. 34.
    Kunasundari B, Sudesh K (2011) Isolation and recovery of microbial polyhydroxyalkanoates. Expr Polym Lett 5(7):620–634CrossRefGoogle Scholar
  35. 35.
    Tan GY, Chen CL, Li L, Ge L, Wang L, Razaad IM, Li Y, Zhao L, Mo Y, Wang JY (2014) Start a research on biopolymer polyhydroxyalkanoate (PHA): a review. Polymers 6(3):706–754CrossRefGoogle Scholar
  36. 36.
    Giedraitytė G, Kalėdienė L (2015) Purification and characterization of polyhydroxybutyrate produced from thermophilic Geobacillus sp. AY 946034 strain. Chemija 26(1):38–45Google Scholar
  37. 37.
    Keshavarz T, Roy I (2010) Polyhydroxyalkanoates: bioplastics with a green agenda. Curr Opin Microbiol 13(3):321–326CrossRefGoogle Scholar
  38. 38.
    Chaitanya K, Mahmood SK, Kausar R, Sunilkumar N (2014) Biotechnological production of polyhydroxyalkonates by various isolates: a review. Int J Pharm Sci Invent 3(9):1–11Google Scholar
  39. 39.
    Koller M, Salerno A, Dias M, Reiterer A, Braunegg G (2010) Modern biotechnological polymer synthesis: a review. Food Technol Biotechnol 48(3):255–269Google Scholar
  40. 40.
    Chen GQ (2010) Plastics completely synthesized by bacteria: polyhydroxyalkanoates. In: Chen GQ (ed) Plastics from bacteria, microbiology monographs. Springer, Berlin Heidelberg, pp 17–37CrossRefGoogle Scholar
  41. 41.
    Chee JY, Yoga SS, Lau NS, Ling SC, Abed RM, Sudesh K (2010) Bacterially produced polyhydroxyalkanoate (PHA): converting renewable resources into bioplastics. Curr Res Technol Educ Top Appl Microbiol Microb Biotechnol 2:1395–1404Google Scholar
  42. 42.
    Reddy CS, Ghai R, Kalia V (2003) Polyhydroxyalkanoates: an overview. Biores Technol 87(2):137–146CrossRefGoogle Scholar
  43. 43.
    Shah KR (2014) Optimization and production of polyhydroxybutyrate by Bacillus subtilis G1S1 from soil. Int J Curr Microbiology Applied Sci 3(5):377–387Google Scholar
  44. 44.
    Lakhawat SS, Pathak AN, Kulkarni M, Srikanth GV (2012) Mutagenesis of azotobacter vinelandii strain and production of polyβ-hydroxybutyrate from distillery spent wash. BioProcess J 11(3):45–51CrossRefGoogle Scholar
  45. 45.
    Chaijamrus S, Udpuay N (2008) Production and characterization of polyhydroxybutyrate from molasses and corn steep liquor produced by Bacillus megaterium ATCC 6748. Agric Eng Int 1–12Google Scholar
  46. 46.
    Lakshmi RS, Hema TA, Divya TR, Starin ST (2012) Production and optimization of polyhydroxybutyrate from Rhizobium sp. present in root nodules. J Pharm Biol Sci 3(2):21–25Google Scholar
  47. 47.
    Ibrahim MH, Steinbüchel A (2009) Poly (3-hydroxybutyrate) production from glycerol by Zobellella denitrificans MW1 via high-cell-density fed-batch fermentation and simplified solvent extraction. Appl Environ Microbiol 75(19):6222–6231CrossRefGoogle Scholar
  48. 48.
    Lee SY (1996) Bacterial polyhydroxyalkanoates. Biotechnol Bioeng 49(1):1–4CrossRefGoogle Scholar
  49. 49.
    Padermshoke A, Katsumoto Y, Sato H, Ekgasit S, Noda I, Ozaki Y (2005) Melting behavior of poly (3-hydroxybutyrate) investigated by two-dimensional infrared correlation spectroscopy. Spectrochim Acta Part A 61(4):541–550CrossRefGoogle Scholar
  50. 50.
    Ewa Rudnik (2008) Properties and applications. Compost Polym Mater 1:(38–69)CrossRefGoogle Scholar
  51. 51.
    Bugnicourt E, Cinelli P, Lazzeri A, Alvarez VA (2014) Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging. Expr Polym Lett 8(11):791–808CrossRefGoogle Scholar
  52. 52.
    Ojumu TV, Yu J, Solomon BO (2004) Production of polyhydroxyalkanoates, a bacterial biodegradable polymers. Afr J Biotechnol 3(1):18–24CrossRefGoogle Scholar
  53. 53.
    Raza ZA, Abid S, Banat IM (2018) Polyhydroxyalkanoates: characteristics, production, recent developments and applications. Int Biodeterior Biodegrad 126:45–56CrossRefGoogle Scholar
  54. 54.
    Prieto MA, de Eugenio LI, Galán B, Luengo JM, Witholt B (2007) Synthesis and degradation of polyhydroxyalkanoates. In: Ramos JL, Filloux A (eds) Pseudomonas. Springer, Dordrecht, pp 397–428CrossRefGoogle Scholar
  55. 55.
    Koller M, Atlić A, Dias M, Reiterer A, Braunegg G (2010) Microbial PHA production from waste raw materials. In: Chen GQ (ed) In Plastics from Bacteria. Microbiology monographs. Springer, Berlin, pp 85–119CrossRefGoogle Scholar
  56. 56.
    Chen GQ, Zhang J, Wang Y (2015) White biotechnology for biopolymers: hydroxyalkanoates and polyhydroxyalkanoates: production and applications. In: Industrial biorefineries & white biotechnology. Elsevier, Amsterdam, pp 555–574CrossRefGoogle Scholar
  57. 57.
    Kulkarni SO, Kanekar PP, Jog JP, Sarnaik SS, Nilegaonkar SS (2015) Production of copolymer, poly (hydroxybutyrate-co-hydroxyvalerate) by Halomonas campisalis MCM B-1027 using agro-wastes. Int J Biol Macromol 72:784–789CrossRefGoogle Scholar
  58. 58.
    Fernández D, Rodríguez E, Bassas M, Viñas M, Solanas AM, Llorens J, Marqués AM, Manresa A (2005) Agro-industrial oily wastes as substrates for PHA production by the new strain Pseudomonas aeruginosa NCIB 40045: Effect of culture conditions. Biochem Eng J 26(2–3):159–167CrossRefGoogle Scholar
  59. 59.
    Samantaray S, Nayak JK, Mallick N (2011) Wastewater utilization for poly-β-hydroxybutyrate production by the cyanobacterium Aulosira fertilissima in a recirculatory aquaculture system. Appl Environ Microbiol 77(24):8735–8743CrossRefGoogle Scholar
  60. 60.
    Preethi R, Sasikala P, Aravind J (2012) Microbial production of polyhydroxyalkanoate (PHA) utilizing fruit waste as a substrate. Res Biotechnol 3(1):61–69Google Scholar
  61. 61.
    Ghate B, Pandit P, Kulkarni C, Deepti DM, Patel TS (2011) PHB production using novel agro-industrial sources from different bacillus species. Int J Pharm Biosci 2(3):242–249Google Scholar
  62. 62.
    Medjeber N, Abbouni B, Menasria T, Beddal A, Cherif N (2015) Screening and production of polyhydroxyalcanoates by Bacillus megaterium by using cane and beet molasses as carbon sources. Der Pharm Lett 7(6):102–109Google Scholar
  63. 63.
    Bhuwal AK, Singh G, Aggarwal NK, Goyal V, Yadav A (2014) Poly-β-hydroxybutyrate production and management of cardboard industry effluent by new Bacillus sp. NA10. Bioresour Bioprocess 1(9):1–11Google Scholar
  64. 64.
    Aremu MO, Layokun SK, Solomon BO (2010) Production of Poly (3-hydroxybutyrate) from cassava starch hydrolysate by Pseudomonas aeruginosa NCIB 950. Am J Sci Ind Res 1(3):421–426Google Scholar
  65. 65.
    Budde CF, Riedel SL, Hübner F, Risch S, Popović MK, Rha CK, Sinskey AJ (2011) Growth and polyhydroxybutyrate production by Ralstonia eutropha in emulsified plant oil medium. Appl Microbiol Biotechnol 89(5):1611–1619CrossRefGoogle Scholar
  66. 66.
    Zhu C, Nomura CT, Perrotta JA, Stipanovic AJ, Nakas JP (2010) Production and characterization of poly-3-hydroxybutyrate from biodiesel-glycerol by Burkholderia cepacia ATCC 17759. Biotechnol Progr 26(2):424–230Google Scholar
  67. 67.
    Palmeri R, Pappalardo F, Fragalà M, Tomasello M, Damigella A, Catara AF (2012) Polyhydroxyalkanoates (PHAs) production through conversion of glycerol by selected strains of Pseudomonas mediterranea and Pseudomonas corrugata. Chem Eng Trans 27Google Scholar
  68. 68.
    Rasheed R, Latha D, Ramachandran D, Gowri GR (2013) Characterization of biopolymer producing Streptomyces parvulus, optimization of process parameters and mass production using less expensive substrates. Int J Bioassays 2(4):649–654Google Scholar
  69. 69.
    Aravind J, Sasikala P, Preethi R (2012) Production of polyhydroxyalkanoate (PHA) using hydrolyzed grass and Syzygium cumini seed as low cost substrates. J Microbiol Biotechnol Food Sci 2(3):970–982Google Scholar
  70. 70.
    Altaee N, Yousif AFE, Sudesh K (2016) Recovery and subsequent characterization of polyhydroxybutyrate from Rhodococcus equi cells grown on crude palm kernel oil. J Taibah Univ Sci 10:543–550CrossRefGoogle Scholar
  71. 71.
    Mayeli N, Motamedi H, Heidarizadeh F (2015) Production of polyhydroxybutyrate by Bacillus axaraqunsis BIPC01 using petrochemical wastewater as carbon source. Braz Arch Biol Technol 58(4):643–650CrossRefGoogle Scholar
  72. 72.
    Lee WH, Loo CY, Nomura CT, Sudesh K (2008) Biosynthesis of polyhydroxyalkanoate copolymers from mixtures of plant oils and 3-hydroxyvalerate precursors Bioresource technology 99(15):pp 6844–6851Google Scholar
  73. 73.
    Kumar BS, Prabakaran G (2006) Production of PHB (bioplastics) using bio-effluent as substrate by Alcaligens eutrophus. Indian J Biotechnol 5(1):76–79Google Scholar
  74. 74.
    Singh G, Kumari A, Mittal A, Yadav A, Aggarwal NK (2013) Poly β-hydroxybutyrate production by Bacillus subtilis NG220 using sugar industry waste water. Biomed Res Int.  https://doi.org/10.1155/2013/952641 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Wang B, Sharma-Shivappa RR, Olson JW, Khan SA (2013) Production of polyhydroxybutyrate (PHB) by Alcaligenes latus using sugarbeet juice. Ind Crops Prod 43:802–811CrossRefGoogle Scholar
  76. 76.
    Gouda MK, Swellam AE, Omar SH (2001) Production of PHB by a Bacillus megaterium strain using sugarcane molasses and corn steep liquor as sole carbon and nitrogen sources. Microbiol Res 156(3):201–207CrossRefGoogle Scholar
  77. 77.
    Bhattacharyya A, Pramanik A, Maji SK, Haldar S, Mukhopadhyay UK, Mukherjee J (2012) Utilization of vinasse for production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) by Haloferax mediterranei. AMB Expr 2(1):34CrossRefGoogle Scholar
  78. 78.
    Verlinden RA, Hill DJ, Kenward MA, Williams CD, Piotrowska-Seget Z, Radecka IK (2011) Production of polyhydroxyalkanoates from waste frying oil by Cupriavidus necator. AMB Expr 1(1):11CrossRefGoogle Scholar
  79. 79.
    Peter HY, Chua H, Huang AL, Ho KP (1999) Conversion of industrial food wastes by Alcaligenes latus into polyhydroxyalkanoates. Appl Biochem Biotechnol 78(1–3):445–454Google Scholar
  80. 80.
    Omar S, Rayes A, Eqaab A, Voß I, Steinbüchel A (2001) Optimization of cell growth and poly (3-hydroxybutyrate) accumulation on date syrup by a Bacillus megaterium strain. Biotechnol Lett 23(14):1119–1123CrossRefGoogle Scholar
  81. 81.
    Chee JY, Tan Y, Samian MR, Sudesh K (2010) Isolation and characterization of a Burkholderia sp. USM (JCM15050) capable of producing polyhydroxyalkanoate (PHA) from triglycerides, fatty acids and glycerols. J Polym Environ 18(4):584–592CrossRefGoogle Scholar
  82. 82.
    Thakor N, Trivedi U, Patel KC (2005) Biosynthesis of medium chain length poly (3-hydroxyalkanoates)(mcl-PHAs) by Comamonas testosteroni during cultivation on vegetable oils. Bioresour Technol 96(17):1843–1850CrossRefGoogle Scholar
  83. 83.
    Yu J, Stahl H (2008) Microbial utilization and biopolyester synthesis of bagasse hydrolysates. Bioresour Technol 99(17):8042–8048CrossRefGoogle Scholar
  84. 84.
    Lee WH, Loo CY, Nomura CT, Sudesh K (2008) Biosynthesis of polyhydroxyalkanoate copolymers from mixtures of plant oils and 3-hydroxyvalerate precursors. Bioresour Technol 99(15):6844–6851CrossRefGoogle Scholar
  85. 85.
    Cavalheiro JM, de Almeida MC, Grandfils C, Da Fonseca MM (2009) Poly (3-hydroxybutyrate) production by Cupriavidus necator using waste glycerol. Process Biochem 44(5):509–515CrossRefGoogle Scholar
  86. 86.
    Loo CY, Lee WH, Tsuge T, Doi Y, Sudesh K (2005) Biosynthesis and characterization of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) from palm oil products in a Wautersia eutropha mutant. Biotechnol Lett 27(18):1405–1410CrossRefGoogle Scholar
  87. 87.
    Graciano Fonseca G, Vasconcellos Antonio R (2006) Polyhydroxyalkanoates production by recombinant Escherichia coli harboring the structural genes of the polyhydroxyalkanoate synthases of Ralstonia eutropha and Pseudomonas aeruginosa using low cost substrate. J Appl Sci 6(8):1745–1750CrossRefGoogle Scholar
  88. 88.
    Marsudi S, Unno H, Hori K (2008) Palm oil utilization for the simultaneous production of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa. Appl Microbiol Biotechnol 78(6):955–961CrossRefGoogle Scholar
  89. 89.
    Fernández D, Rodríguez E, Bassas M, Viñas M, Solanas AM, Llorens J, Marqués AM, Manresa A (2005) Agro-industrial oily wastes as substrates for PHA production by the new strain Pseudomonas aeruginosa NCIB 40045: effect of culture conditions. Biochem Eng J 26(2–3):159 – 67Google Scholar
  90. 90.
    Simon-Colin C, Raguénès G, Crassous P, Moppert X, Guezennec J (2008) A novel mcl-PHA produced on coprah oil by Pseudomonas guezennei biovar. tikehau, isolated from a “kopara” mat of French Polynesia. Int J Biol Macromol 43(2):176–181CrossRefGoogle Scholar
  91. 91.
    Pantazaki AA, Papaneophytou CP, Pritsa AG, Liakopoulou-Kyriakides M, Kyriakidis DA (2009) Production of polyhydroxyalkanoates from whey by Thermus thermophilus HB8. Process Biochem 44(8):847–853CrossRefGoogle Scholar
  92. 92.
    Kosseva MR, Rusbandi E (2017) Trends in the biomanufacture of polyhydroxyalkanoates with focus on downstream processing. Int J Biol Macromol 107A:762–778Google Scholar
  93. 93.
    Salgaonkar BB, Mani K, Braganca JM (2013) Characterization of polyhydroxyalkanoates accumulated by a moderately halophilic salt pan isolate Bacillus megaterium strain H16. J Appl Microbiol 114(5):1347–1356CrossRefGoogle Scholar
  94. 94.
    Valappil SP, Misra SK, Boccaccini AR, Keshavarz T, Bucke C, Roy I (2007) Large-scale production and efficient recovery of PHB with desirable material properties, from the newly characterised Bacillus cereus SPV. J Biotechnol 132(3):251–258CrossRefGoogle Scholar
  95. 95.
    Nair AM, Annamalai K, Kamala Kannan S, Kuppusamy S (2014) Characterization of polyhydroxyalkanoates produced by Bacillus Subtilis isolated from soil samples. Malaya J Biosci 1(1):8–12Google Scholar
  96. 96.
    Shrivastav A, Mishra SK, Shethia B, Pancha I, Jain D, Mishra S (2010) Isolation of promising bacterial strains from soil and marine environment for polyhydroxyalkanoates (PHAs) production utilizing Jatropha biodiesel byproduct. Int J Biol Macromol 47(2):283–287CrossRefGoogle Scholar
  97. 97.
    Munir S, Jamil N (2015) Characterization of polyhydroxyalkanoates produced by contaminated soil bacteria using wastewater and glucose as carbon sources. Trop J Pharm Res 14(9):1605–1611Google Scholar
  98. 98.
    Teeka J, Imai T, Reungsang A, Cheng X, Yuliani E, Thiantanankul J, Poomipuk N, Yamaguchi J, Jeenanong A, Higuchi T, Yamamoto K (2012) Characterization of polyhydroxyalkanoates (PHAs) biosynthesis by isolated Novosphingobium sp. THA_AIK7 using crude glycerol. J Ind Microbiol Biotechnol 39(5):749–758CrossRefGoogle Scholar
  99. 99.
    Mizuno K, Ohta A, Hyakutake M, Ichinomiya Y, Tsuge T (2010) Isolation of polyhydroxyalkanoate-producing bacteria from a polluted soil and characterization of the isolated strain Bacillus cereus YB-4. Polym Degrad Stab 95(8):1335–1339CrossRefGoogle Scholar
  100. 100.
    Masood F, Yasin T, Hameed A (2015) Production and characterization of tailor-made polyhydroxyalkanoates by Bacillus cereus FC11. Pak J Zool 47:491–503Google Scholar
  101. 101.
    Farzana Khan Perveen FK (2015) Recent advances in biopolymers. Intech Publishers, LondonGoogle Scholar
  102. 102.
    Philip S, Keshavarz T, Roy I (2007) Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol 82(3):233–247CrossRefGoogle Scholar
  103. 103.
    Wang JH, Qin J, Chakravarty J, Tsai FJ, Smith RC Jr, Fenwick CD, Wallajapet PR, Osteen DK, Evans EA, Englebert SS (2007) Kimberly-Clark Worldwide Inc, assignee. Nonabsorbent surge layer having discrete regions of superabsorbent and method for making, United States patent US 7,189,888Google Scholar
  104. 104.
    Zinn M, Witholt B, Egli T (2001) Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv Drug Deliv Rev 53(1):5–21CrossRefGoogle Scholar
  105. 105.
    Hiraishi A, Khan ST (2003) Application of polyhydroxyalkanoates for denitrification in water and wastewater treatment. Appl Microbiol Biotechnol 61(2):103–109CrossRefGoogle Scholar
  106. 106.
    Sabbir A, Fatma T (2014) Polyhydroxybutyrate—a biodegradable plastic and its various formulations. Int J Innov Res Sci Eng Technol 3(2):9494–9499Google Scholar
  107. 107.
    Ghate B, Pandi P, Kulkarni C, Mungi DD, Patel TS (2011) PHB production using novel agro-industrial sources from different Bacillus species. Int J Pharm Biol Sci 2(3):242–249Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. B. Sathya
    • 1
  • V. Sivasubramanian
    • 1
  • A. Santhiagu
    • 2
  • Chitra Sebastian
    • 3
  • R. Sivashankar
    • 1
  1. 1.Department of Chemical EngineeringNational Institute of Technology CalicutKozhikodeIndia
  2. 2.School of BiotechnologyNational Institute of Technology CalicutKozhikodeIndia
  3. 3.Department of BiotechnologyMET’S School of EngineeringThrissurIndia

Personalised recommendations