Advertisement

Journal of Polymers and the Environment

, Volume 26, Issue 9, pp 3762–3772 | Cite as

Polyvinyl Alcohol (PVA)/Starch Bioactive Packaging Film Enriched with Antioxidants from Spent Coffee Ground and Citric Acid

  • Artjima Ounkaew
  • Pornnapa Kasemsiri
  • Khanita Kamwilaisak
  • Khwantri Saengprachatanarug
  • Wiyada Mongkolthanaruk
  • Mutjarin Souvanh
  • Uraiwan Pongsa
  • Prinya Chindaprasirt
Original Paper
  • 172 Downloads

Abstract

The bioactive packaging polyvinyl alcohol (PVA)/starch films were prepared by incorporating combined antioxidant agents i.e. extracted spent coffee ground (ex-SCG) and citric acid. Effect of citric acid content on chemical compatibility, releasing of antioxidant, antibacterial activities, and physical and mechanical properties of PVA/starch incorporated ex-SCG (PSt-E) films was studied. The results of ATR-FTIR spectra showed that antioxidant agents of ex-SCG can penetrate into the film and the ester bond of blended films by citric acid was also observed. The presence of ex-SCG increased efficiency of antioxidant release and antimicrobial activity. The PSt-E film incorporated 30 wt% citric acid showed minimum inhibitory concentration against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The incorporation of ex-SCG and citric acid into film showed a synergistic effect on antibacterial activity. The water resistance and kinetic moisture sorption improved with incorporation of citric acid. The tensile strength and biodegradability of samples were in range of 5.63–7.44 MPa and 65.28–86.64%, respectively. Based on this study, PSt-E film incorporated 30 wt% citric acid can be applied as novel food packaging materials.

Keywords

Synergistic antibacterial activity Bioactive film Spent coffee ground Citric acid 

Notes

Acknowledgements

This work was financial supported by New Research Group, Research fund of the faculty of Engineering, Khon Kaen University and the Applied Engineering for Important Crops of the North East Research Group, Khon Kaen University. The authors also would like to acknowledge the support of Hitachi Scholarship Research and Tokyo Institute of Technology. The authors thank Prof. Shinji Ando at Tokyo Institute of Technology for helpful advice and utilization of ATR-FTIR and SEM.

References

  1. 1.
    Guo G, Zhang C, Du Z, Zou W, Li H (2015) J Polym Environ 23(2):183–189CrossRefGoogle Scholar
  2. 2.
    Puglia D, Dominici F, Kenny JM, Santulli C, Governatori C, Tosti G, Benincasa P (2016) J Polym Environ 24(1):37–47CrossRefGoogle Scholar
  3. 3.
    Trongchuen K, Ounkaew A, Kasemsiri P, Hiziroglu S, Mongkolthanaruk W, Wannasutta R, Pongsa U, Chindaprasirt P (2018) Starch Stärke.  https://doi.org/10.1002/star.201700238
  4. 4.
    Zhao M, Wang Y, Liu L, Liu L, Chen M, Zhang C, Lu Q (2017) Polym Compos.  https://doi.org/10.1002/pc.24519
  5. 5.
    Zhang C, Milhorn A, Haile M, Mai G, Grunlan JC (2017) Green Mater 5(4):182–186CrossRefGoogle Scholar
  6. 6.
    Kasemsiri P, Dulsang N, Pongsa U, Hiziroglu S, Chindaprasirt P (2017) J Polym Environ 25(2):378–390CrossRefGoogle Scholar
  7. 7.
    Pirooz M, Navarchian AH, Emtiazi G (2017) J Polym Environ 26(4):1702–1714CrossRefGoogle Scholar
  8. 8.
    Tian H, Yan J, Rajulu AV, Xiang A, Luo X (2017) Int J Biol Macromol 96(Supplement C):518–523CrossRefPubMedGoogle Scholar
  9. 9.
    Mittal A, Garg S, Kohli D, Maiti M, Jana AK, Bajpai S (2016) Carbohydr Polym 151(Supplement C):926–938CrossRefPubMedGoogle Scholar
  10. 10.
    Acosta S, Chiralt A, Santamarina P, Rosello J, González-Martínez C, Cháfer M (2016) Food Hydrocoll 61(Supplement C):233–240CrossRefGoogle Scholar
  11. 11.
    Talón E, Trifkovic KT, Vargas M, Chiralt A, González-Martínez C (2017) Carbohydr Polym 175(Supplement C):122–130CrossRefPubMedGoogle Scholar
  12. 12.
    Valencia-Sullca C, Vargas M, Atarés L, Chiralt A (2018) Food Hydrocoll 75(Supplement C):107–115CrossRefGoogle Scholar
  13. 13.
    Ferri J, Garcia-Garcia D, Sánchez-Nacher L, Fenollar O, Balart R (2016) Carbohydr Polym 147:60–68CrossRefPubMedGoogle Scholar
  14. 14.
    Correa AC, Carmona VB, Simão JA, Mattoso LHC, Marconcini JM (2017) Carbohydr Polym 167:177–184CrossRefPubMedGoogle Scholar
  15. 15.
    Seligra PG, Jaramillo CM, Famá L, Goyanes S (2016) Carbohydr Polym 138:66–74CrossRefPubMedGoogle Scholar
  16. 16.
    Wu Z, Wu J, Peng T, Li Y, Lin D, Xing B, Li C, Yang Y, Yang L, Zhang L (2017) Polymers 9(3):102CrossRefGoogle Scholar
  17. 17.
    Jose J, Al-Harthi MA (2017) Iran Polym J 26(8):579–587CrossRefGoogle Scholar
  18. 18.
    Priya B, Gupta VK, Pathania D, Singha AS (2014) Carbohydr Polym 109(Supplement C):171–179CrossRefPubMedGoogle Scholar
  19. 19.
    De’Nobili MD, Soria M, Martinefski MR, Tripodi VP, Fissore EN, Rojas AM (2016) J Food Eng 175:1–7CrossRefGoogle Scholar
  20. 20.
    Dominguez-Martinez BM, Martínez-Flores HE, Berrios JDJ, Otoni CG, Wood DF, Velazquez G (2017) J Polym Environ 25(3):683–691CrossRefGoogle Scholar
  21. 21.
    Chen C-W, Xie J, Yang F-X, Zhang H-L, Xu Z-W, Liu J-L, Chen Y-J (2017) J Food Process Preserv.  https://doi.org/10.1111/jfpp.13374 CrossRefGoogle Scholar
  22. 22.
    López de Dicastillo C, Nerín C, Alfaro P, Catalá R, Gavara R, Hernández-Muñoz P (2011) J Agric Food Chem 59(14):7832–7840CrossRefPubMedGoogle Scholar
  23. 23.
    Abdollahi M, Rezaei M, Farzi GA (2012) J Food Eng 111(2):343–350CrossRefGoogle Scholar
  24. 24.
    Tongnuanchan P, Benjakul S, Prodpran T (2012) Food Chem 134(3):1571–1579CrossRefPubMedGoogle Scholar
  25. 25.
    Kanmani P, Rhim J-W (2014) Carbohydr Polym 102:708–716CrossRefPubMedGoogle Scholar
  26. 26.
    Pereira de Abreu DA, Maroto J, Villalba Rodríguez K, Cruz JM (2012) J Sci Food Agric 92(2):427–432CrossRefGoogle Scholar
  27. 27.
    Yen W-J, Wang B-S, Chang L-W, Duh P-D (2005) J Agric Food Chem 53(7):2658–2663CrossRefPubMedGoogle Scholar
  28. 28.
    Parkar SG, Stevenson DE, Skinner MA (2008) Int J Food Microbiol 124(3):295–298CrossRefPubMedGoogle Scholar
  29. 29.
    Monente C, Bravo J, Vitas AI, Arbillaga L, De Peña MP, Cid C (2015) J Funct Foods 12:365–374CrossRefGoogle Scholar
  30. 30.
    Brand-Williams W, Cuvelier ME, Berset C (1995) LWT 28(1):25–30CrossRefGoogle Scholar
  31. 31.
    Kim D-O, Lee KW, Lee HJ, Lee CY (2002) J Agric Food Chem 50(13):3713–3717CrossRefPubMedGoogle Scholar
  32. 32.
    Yoon S-D, Park M-H, Byun H-S (2012) Carbohydr Polym 87(1):676–686CrossRefGoogle Scholar
  33. 33.
    Ge L, Zhu M, Xu Y, Li X, Li D, Mu C (2017) Food Bioprocess Technol 10(9):1727–1736CrossRefGoogle Scholar
  34. 34.
    Ibrahim H, Farag M, Megahed H, Mehanny S (2014) Carbohydr Polym 101:11–19CrossRefPubMedGoogle Scholar
  35. 35.
    Polat S, Uslu M-K, Aygün A, Certel M (2013) J Food Eng 116(2):267–276CrossRefGoogle Scholar
  36. 36.
    Prachayawarakorn J, Pomdage W (2014) Mater Des 61:264–269CrossRefGoogle Scholar
  37. 37.
    Jayasekara R, Harding I, Bowater I, Christie G, Lonergan GT (2004) Polym Test 23(1):17–27CrossRefGoogle Scholar
  38. 38.
    Lyman DJ, Benck R, Dell S, Merle S, Murray-Wijelath J (2003) J Agric Food Chem 51(11):3268–3272CrossRefPubMedGoogle Scholar
  39. 39.
    Xie JX, Chang JB, Wang XM (2001) Infra-red spectrum applications in organic chemistry and medicinal chemistry. Scientific Publication, Beijing, pp 296–297Google Scholar
  40. 40.
    Shi R, Bi J, Zhang Z, Zhu A, Chen D, Zhou X, Zhang L, Tian W (2008) Carbohydr Polym 74(4):763–770CrossRefGoogle Scholar
  41. 41.
    Shi R, Zhang Z, Liu Q, Han Y, Zhang L, Chen D, Tian W (2007) Carbohydr Polym 69(4):748–755CrossRefGoogle Scholar
  42. 42.
    Panusa A, Zuorro A, Lavecchia R, Marrosu G, Petrucci R (2013) J Agric Food Chem 61(17):4162–4168CrossRefPubMedGoogle Scholar
  43. 43.
    Hraš AR, Hadolin M, Knez Ž, Bauman D (2000) Food Chem 71(2):229–233CrossRefGoogle Scholar
  44. 44.
    Requena R, Vargas M, Chiralt A (2017) Eur Polym J 92(Supplement C):185–193CrossRefGoogle Scholar
  45. 45.
    López-de-Dicastillo C, Gómez-Estaca J, Catalá R, Gavara R, Hernández-Muñoz P (2012) Food Chem 131(4):1376–1384CrossRefGoogle Scholar
  46. 46.
    Russell NJ, Gould GW (2012) Food preservatives. Springer, New YorkGoogle Scholar
  47. 47.
    Demirci A, Ngadi MO (2012) Microbial decontamination in the food industry: novel methods and applications. Woodhead Publishing Ltd., CambridgeCrossRefGoogle Scholar
  48. 48.
    Mani-López E, García HS, López-Malo A (2012) Food Res Int 45(2):713–721CrossRefGoogle Scholar
  49. 49.
    Lima VN, Oliveira-Tintino CD, Santos ES, Morais LP, Tintino SR, Freitas TS, Geraldo YS, Pereira RL, Cruz RP, Menezes IR (2016) Microb Pathog 99:56–61CrossRefPubMedGoogle Scholar
  50. 50.
    Lou Z, Wang H, Zhu S, Ma C, Wang Z (2011) J Food Sci 76(6):M398–M403CrossRefPubMedGoogle Scholar
  51. 51.
    Guerrero P, Stefani PM, Ruseckaite RA, de la Caba K (2011) J Food Eng 105(1):65–72CrossRefGoogle Scholar
  52. 52.
    Abdillahi H, Chabrat E, Rouilly A, Rigal L (2013) Ind Crops Prod 50(Supplement C):104–111CrossRefGoogle Scholar
  53. 53.
    Seligra PG, Medina Jaramillo C, Famá L, Goyanes S (2016) Carbohydr Polym 138(Supplement C):66–74CrossRefPubMedGoogle Scholar
  54. 54.
    Hulwani A, Zain M, Kahar M, Wahab AB, Ismail H (2018) J Polym Environ 26(2):691–700CrossRefGoogle Scholar
  55. 55.
    Rudnik E, Briassoulis D (2011) J Polym Environ 19(1):18–39CrossRefGoogle Scholar
  56. 56.
    Uranga J, Leceta I, Etxabide A, Guerrero P, de la Caba K (2016) Eur Polym J 78(Supplement C):82–90CrossRefGoogle Scholar
  57. 57.
    Gaikwad KK, Lee JY, Lee YS (2016) J Food Sci Technol 53(3):1608–1619CrossRefPubMedGoogle Scholar
  58. 58.
    Liu B, Xu H, Zhao H, Liu W, Zhao L, Li Y (2017) Carbohydr Polym 157:842–849CrossRefPubMedGoogle Scholar
  59. 59.
    Araújo GKP, Souza SJ, Silva MV, Yamashita F, Gonçalves OH, Leimann FV, Shirai MA (2015) Int J Food Sci Technol 50(9):2080–2087CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Artjima Ounkaew
    • 1
  • Pornnapa Kasemsiri
    • 1
  • Khanita Kamwilaisak
    • 1
  • Khwantri Saengprachatanarug
    • 2
  • Wiyada Mongkolthanaruk
    • 3
  • Mutjarin Souvanh
    • 3
  • Uraiwan Pongsa
    • 4
  • Prinya Chindaprasirt
    • 5
  1. 1.Sustainable Infrastructure Research and Development Center and Department of Chemical Engineering, Faculty of EngineeringKhon Kaen UniversityKhon KaenThailand
  2. 2.Department of Agricultural Engineering, Faculty of EngineeringKhon Kaen UniversityKhon KaenThailand
  3. 3.Department of Microbiology, Faculty of ScienceKhon Kaen UniversityKhon KaenThailand
  4. 4.Division of Industrial Engineering Technology, Faculty of Industry and TechnologyRajamangala University of TechnologyHua HinThailand
  5. 5.Sustainable Infrastructure Research and Development Center, Department of Civil Engineering, Faculty of EngineeringKhon Kaen UniversityKhon KaenThailand

Personalised recommendations