Advertisement

Journal of Polymers and the Environment

, Volume 26, Issue 9, pp 3731–3744 | Cite as

Reuse and Valorisation of Hemp Fibres and Rice Husk Particles for Fire Resistant Fibreboards and Particleboards

  • Daniele Battegazzore
  • Jenny Alongi
  • Donatella Duraccio
  • Alberto Frache
Original Paper
  • 134 Downloads

Abstract

The present manuscript deals with the reuse and valorisation of agricultural wastes and by-products (namely, hemp fibres and rice husk particles) to produce fire retardant fibreboards and particleboards for applications in biobuilding. Since fire retardancy is one of the most important challenges, a detailed study on the thermal and flame retardant properties of the above materials assembled using starch as the binder and different ammonium dihydrogen phosphate contents as fire retardant agents, is proposed. The combustion properties have been investigated in developing fire conditions, employing a radiating heat flux of 35 kW/m2 generated by a cone calorimeter. An optimised formulation able to make both fibreboards and particleboards not ignitable has been found and is predicted to be “A2/B” class in the European fire classification for building products. The resultant materials have proven to undergo pyrolysis and not to burn, favouring the formation of a dense and consistent final residue.

Keywords

Hemp fibres Rice husk Cone calorimeter Biobuilding Flame retardancy 

Notes

Acknowledgements

The authors want to thank Mr. Fabio Cuttica for cone calorimetry tests, Ms. Giuseppina Iacono for SEM analyses and Prof. Giovanni Camino for fruitful discussion.

References

  1. 1.
    Satyanarayana K, Ramos L, Wypych F (2005) Biotechnology in energy management, 2, p 583Google Scholar
  2. 2.
    Evans W, Isaac D, Suddell B, Crosky A, Natural fibres and their composites: a global perspective, at: Proceedings of the Risø International Symposium on Materials Science, 1Google Scholar
  3. 3.
    Satyanarayana KG, Arizaga GGC, Wypych F (2009) Prog Polym Sci 34:982CrossRefGoogle Scholar
  4. 4.
    Herrmann AS, Nickel J, Riedel U (1998) Polym Degrad Stab 59:251CrossRefGoogle Scholar
  5. 5.
    John MJ, Thomas S (2008) Carbohyd Polym 71:343CrossRefGoogle Scholar
  6. 6.
    Koronis G, Silva A, Fontul M (2013) Compos Part B: Eng 44:120CrossRefGoogle Scholar
  7. 7.
    Kozlowski R, Mieleniak B, New trends in the utilization of by products of fibre crops residue in pulp and paper industry, building engineering, automotive industry and interior furnishing, at: Proceedings from the Third International Symposium on Natural Polymers and Composites, Sao Paulo, 504Google Scholar
  8. 8.
    Madurwar MV, Ralegaonkar RV, Mandavgane SA (2013) Constr Build Mater 38:872CrossRefGoogle Scholar
  9. 9.
    Padkho N (2012) Procedia Eng 32:1113CrossRefGoogle Scholar
  10. 10.
    Alvarez VA, Vazquez A (2004) Polym Degrad Stab 84:13CrossRefGoogle Scholar
  11. 11.
    Chapple S, Anandjiwala R (2010) J Thermoplast Compos Mater 23:871CrossRefGoogle Scholar
  12. 12.
    Freivalde L, Kukle S, Andzs M, Buksans E, Gravitis J (2014) Composites B Eng 67:510CrossRefGoogle Scholar
  13. 13.
    Palumbo M, Formosa J, Lacasta AM (2015) Constr Build Mater 79:34CrossRefGoogle Scholar
  14. 14.
    Gallo E, Sanchez-Olivares G, Schartel B (2013) Polimery 58:395CrossRefGoogle Scholar
  15. 15.
    Kozlowski R, Mieleniak B, Helwig M, Przepiera A (1999) Polym Degrad Stab 64:523CrossRefGoogle Scholar
  16. 16.
    Alongi J, Malucelli G (2015) Rsc Adv 5:24239CrossRefGoogle Scholar
  17. 17.
    Lowden LA, Hull TR (2013) Fire Sci Rev 2:1CrossRefGoogle Scholar
  18. 18.
    Azwa ZN, Yousif BF, Manalo AC, Karunasena W (2013) Mater Des 47:424CrossRefGoogle Scholar
  19. 19.
    Suardana NPG, Ku MS, Lim JK (2011) Mater Des 32:1990CrossRefGoogle Scholar
  20. 20.
    Bagga SL, Jain RK, Gur IS, Bhatnagar HL (1990) Polym Int 22:107Google Scholar
  21. 21.
    Dorez G, Otazaghine B, Taguet A, Ferry L, Lopez-Cuesta JM (2014) Polym Int 63:1665CrossRefGoogle Scholar
  22. 22.
    Battegazzore D, Alongi J, Frache A (2014) J Polym Environ 22:88CrossRefGoogle Scholar
  23. 23.
    Faludi G, Hári J, Renner K, Móczó J, Pukánszky B (2013) Compos Sci Technol 77:67CrossRefGoogle Scholar
  24. 24.
    Huda M, Drzal L, Misra M, Mohanty A (2006) J Appl Polym Sci 102:4856CrossRefGoogle Scholar
  25. 25.
    Bogren KM, Gamstedt EK, Neagu RC, AÅkerholm M, LindstroÖm M (2006) J Thermoplast Compos Mater 19:613CrossRefGoogle Scholar
  26. 26.
    Kozlowski R, Mieleniak B, Przepiera A (1995) Zemedelska Technika-UZPI (Czech Republic)Google Scholar
  27. 27.
    Melo RRd, Stangerlin DM, Santana RRC, Pedrosa TD (2014) Mater Res 17:682CrossRefGoogle Scholar
  28. 28.
    Rowell RM, Sanadi AR, Caulfield DF, Jacobson RE (1997) Lignocellulosic-plastic composites, p 23Google Scholar
  29. 29.
    Pickering KL, Efendy MGA, Le TM (2016) Compos A: Appl Sci Manufac 83:98CrossRefGoogle Scholar
  30. 30.
    Kalia S, Kaith BS, Kaur I (2009) Polymer Eng Sci 49:1253CrossRefGoogle Scholar
  31. 31.
    Carus M, Karst S, Kauffmann A, Hobson J, Bertucelli S (2013) European Industrial Hemp Association (EIHA), Hürth (Germany)Google Scholar
  32. 32.
    Kozłowski R, Władyka-Przybylak M (2008) Polym Adv Technol 19:446CrossRefGoogle Scholar
  33. 33.
    Battegazzore D, Alongi J, Frache A, Wagberg L, Carosio F (2017) Mater Today Commun 13:92CrossRefGoogle Scholar
  34. 34.
    Ciannamea EM, Stefani PM, Ruseckaite RA (2010) Bioresour Technol 101:818CrossRefPubMedGoogle Scholar
  35. 35.
    Temitope AK (2015) Ind Eng Manag 04Google Scholar
  36. 36.
    Gaan S, Sun G (2007) Polym Degrad Stab 92:968CrossRefGoogle Scholar
  37. 37.
    Östman BA-L, Mikkola E (2006) Holz als Roh-und Werkstoff 64:327CrossRefGoogle Scholar
  38. 38.
    Bilal A, Lin RJ, Jayaraman K (2014) J Reinf Plast Compos 33:2021CrossRefGoogle Scholar
  39. 39.
    Battegazzore D, Alongi J, Duraccio D, Frache A (2018) J Polym Environ 26:1652CrossRefGoogle Scholar
  40. 40.
    in. ANSI A208.1 standardGoogle Scholar
  41. 41.
    in. CSN EN 312 standardGoogle Scholar
  42. 42.
    in. ISO 5660 standardGoogle Scholar
  43. 43.
    in EN, BS 13823 British Standards Institution, London, UK, 2002Google Scholar
  44. 44.
    Hakkarainen T (2001) J Fire Sci 19:284CrossRefGoogle Scholar
  45. 45.
    Kokkala MA, Thomas PH, Karlsson B (1993) Fire Mater 17:209CrossRefGoogle Scholar
  46. 46.
    Alongi J, Malucelli G (2015) React Mech Therm Anal Adv Mater 301Google Scholar
  47. 47.
    Battegazzore D, Bocchini S, Alongi J, Frache A (2014) RSC Adv 4:54703CrossRefGoogle Scholar
  48. 48.
    Schartel B, Pawlowski KH, Lyon RE (2007) Thermochim Acta 462:1CrossRefGoogle Scholar
  49. 49.
    Alongi J, Cuttica F, Carosio F, Bourbigot S (2015) Cellulose 22:3477CrossRefGoogle Scholar
  50. 50.
    Schartel B, Hull TR (2007) Fire Mater 31:327CrossRefGoogle Scholar
  51. 51.
    Hapuarachchi TD, Ren G, Fan M, Hogg PJ, Peijs T (2007) Appl Compos Mater 14:251CrossRefGoogle Scholar
  52. 52.
    Das O, Kim NK, Hedenqvist MS, Lin RJT, Sarmah AK, Bhattacharyya D (2018) Environ Manag 1–11Google Scholar
  53. 53.
    Battegazzore D, Alongi J, Fontaine G, Frache A, Bourbigot S, Malucelli G (2015) RSC Adv 5:39424CrossRefGoogle Scholar
  54. 54.
    Boccarusso L, Carrino L, Durante M, Formisano A, Langella A, Minutolo FM (2016) Compos B: Eng 89:117CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di Scienza Applicata e TecnologiaPolitecnico di TorinoAlessandriaItaly
  2. 2.Dipartimento di ChimicaUniversità degli Studi di MilanoMilanoItaly
  3. 3.Istituto per le Macchine Agricole e Movimento Terra (IMAMOTER)-CNRTorinoItaly

Personalised recommendations