Advertisement

Journal of Polymers and the Environment

, Volume 26, Issue 9, pp 3710–3717 | Cite as

Comparative Study of Xylan Extracted by Sodium and Potassium Hydroxides (NaOH and KOH) from Bagasse Pulp: Characterization and Morphological Properties

  • Parizad Sheikhi
  • Seyed Rahman Djafari Petroudy
Original Paper
  • 25 Downloads

Abstract

Xylan is the second most abundant polysaccharide and the predominant hemicellulose component of soda bagasse pulp. The present endeavor focuses on increasing the value addition to underutilized agro-industrial residue such as bagasse. For this purpose, xylan was isolated by two conventional alkali extraction methods i.e. NaOH and KOH. The recovery rate and sugar composition of different reaction times and alkali consumptions were monitored with advanced method such as High Performance Liquid Chromatography (HPLC). The Fourier Transform Infrared Spectroscopy (FTIR) and Wide Angle X-ray spectroscopy (WAXS) were respectively employed to characterize the functional groups and Crystallinity Index (CrI) changes during the extraction process. It was explored that highest xylan recovery rates were obtained with 6% of NaOH at 120 min and 6% KOH at 45 min. The xylan morphology via WAXS was found that its structure to be amorphous. HPLC results also showed KOH had higher effectiveness than NaOH in terms of extracted xylan purity. Highest XGRs (Xylose to Glucose Ratios) were also achieved by KOH processes. Hence, this study contributes to the adequate utilization of agricultural residues, with promising potential for applications in the production of certain novel materials and chemical conversion industries.

Keywords

Xylan Soda bagasse pulp Sodium hydroxide Potassium hydroxide 

Notes

Acknowledgements

The authors wish to thank the Dezful Branch, Islamic Azad University for the financial support and also Shahid Beheshti University (SBU) technicians for their skillful laboratory work. The authors would like to thank all the editor and reviewers for their comments in the development and improvement of this paper.

References

  1. 1.
    Karimi Alavijeh M, Yaghmaei S (2016) Waste Manag 52:375–394CrossRefGoogle Scholar
  2. 2.
    Najafi G, Ghobadian B, Tavakoli T, Yusaf T (2009) Renew Sustain Energy 13(6/7):1418–1427CrossRefGoogle Scholar
  3. 3.
    Ashori A, Nourbakhsh A, Karegarfard A (2009) J Compos Mater 43(18):1927–1934CrossRefGoogle Scholar
  4. 4.
    Jafari-Petroudy SR, Resalati H, Rezayati Charani P (2011) Bioresources 6(3):2483–2491Google Scholar
  5. 5.
    Manttari M, Van der Bruggen B, Nystrom M (2013) Nanofiltration. Chapter 9. In: Ramaswamy S, Huang HJ, Ramarao BV (eds) Separation and purification technologies in biorefineries. Wiley, HobokenGoogle Scholar
  6. 6.
    Djafari Petroudy SR, Rasooly Garmaroody E, Rudi H (2017) Carbohyd Polym 157:1883–1891CrossRefGoogle Scholar
  7. 7.
    Djafari Petroudy SR, Ghasemian A, Resalati H, Syverud K, Chinga-Carrasco G (2015) Cellulose 22:385–395CrossRefGoogle Scholar
  8. 8.
    Canilha L, Chandel AK, Suzane dos Santos Milessi T, Antunes FAF, Luiz da Costa Freitas W, da Silva SS (2012) J Biomed Biotechnol.  https://doi.org/10.1155/2012/989572 Google Scholar
  9. 9.
    Rabelo SC, Carrere H, Maciel Filho R, Costaa AC (2011) Bioresour Technol 102(17):7887–7895CrossRefGoogle Scholar
  10. 10.
    Rocha GJM, Martin C, da silva VFN, Gomez EO, Goncalves AR (2012) Bioresour Technol 111:447–452CrossRefGoogle Scholar
  11. 11.
    da Silva AS, Inoue H, Endo T, Yano S, Bon EP (2010) Bioresour Technol 101(19):7402–7409CrossRefGoogle Scholar
  12. 12.
    Ebringerová A, Hromádková Z, Heinze T (2005) Adv Polym Sci 186:1–67CrossRefGoogle Scholar
  13. 13.
    de Carvalho DM, Martínez-Abadc A, Evtuguind DV, Colodettea JL, Lindström ME, Vilaplana F, Sevastyanova O (2017) Carbohyd Polym 156:223–234CrossRefGoogle Scholar
  14. 14.
    Aguedo M, Fougnies C, Dermience M, Richel A (2014) Extraction by three processes of arabinoxylans from wheat bran and characterization of the fractions obtained. Carbohydr Polymer 105:317–324CrossRefGoogle Scholar
  15. 15.
    Xu F, Sun JX, Liu FC, Sun RC (2006) Carbohydr Research 341:253–261CrossRefGoogle Scholar
  16. 16.
    Cheng YS, Zheng Y, Yu CW, Dooley TM, Jenkins BM, VanderGheynst JS (2010) Appl Biochem Biotechnol 162:1768–1784CrossRefGoogle Scholar
  17. 17.
    Janzon R, Puls J, Saake B (2006) Holzforschung 60:347–354CrossRefGoogle Scholar
  18. 18.
    Janzon R, Puls J, Bohn A, Potthast A, Saake B (2008) Cellulose 15:739–750CrossRefGoogle Scholar
  19. 19.
    Hagglund E, Lindberg B, McPherson J (1956) Acta Chem Scand 10:1160–1164CrossRefGoogle Scholar
  20. 20.
    Sjostrom E, Enstrom B (1967) TAPPI 50:32–36Google Scholar
  21. 21.
    Peng XW, Ren JL, Zhong LX, Sun RC (2012) J Agric Food Chem 60:1695–1702CrossRefGoogle Scholar
  22. 22.
    Evtuguin D, Tomas J, Silva AS, Neto CP (2003) Carbohydr Res 338:597–604CrossRefGoogle Scholar
  23. 23.
    Deutschmann R, Dekker RFH (2012) Biotechnol Adv 30:1627–1640CrossRefGoogle Scholar
  24. 24.
    Moure A, Gullon P, Domınguez H, Parajo JS (2006) Process Biochem 41:1913–1923CrossRefGoogle Scholar
  25. 25.
    Borrega M, Concha-Carrasco S, Pranovich A, Sixta H (2017) Cellulose 24:5133–5145CrossRefGoogle Scholar
  26. 26.
    Segal L, Creely JJ, Martin AE, Conrad CM (1959) Text Res J 29:786–794CrossRefGoogle Scholar
  27. 27.
    Lindman B, Medronho B, Alves L, Costa C, Edlund H, Norgren M (2017) Phys Chem Chem Phys 19:23704–23718CrossRefGoogle Scholar
  28. 28.
    Sixta H, Guetsch J, Nousiainen T, Wollboldt P (2011) 5th International Colloquium on Eucalyptus Pulp, May 9–12, 2011. Porto Seguro, Bahia, BrazilGoogle Scholar
  29. 29.
    Teleman A, Larsson PT, Iversen T (2001) Cellulose 8:209–215CrossRefGoogle Scholar
  30. 30.
    Ayoub A, Venditti RA, Pawlak JJ, Sadeghifar H, Salam A (2013) Ind Crops Prod 44:306–314CrossRefGoogle Scholar
  31. 31.
    Sun XF, Xu F, Sun RC, Geng ZC, Fowler P, Baird MS (2005) J Agric Food Chem 53:860–870CrossRefGoogle Scholar
  32. 32.
    Gupta S, Madan RN, Bansal MC (1987) Chemical composition of Pinus caribaea hemicellulose. Tappi J 70(8):113–114Google Scholar
  33. 33.
    Sun RC, Xiao B, Lawther JM (2008) J Appl Polym Sci 68:1633–1641CrossRefGoogle Scholar
  34. 34.
    da Costa Lopes AM, João KG, Morais ARC, Bogel-Łukasik E, Bogel-Łukasik B (2013) Sustain Chem Process 1(1) pp 1–31CrossRefGoogle Scholar
  35. 35.
    Djafari Petroudy SR, Syverud K, Chinga-Carrasco G, Ghasemian A, Resalati H (2014) Carbohydr Polym 99:311–318CrossRefGoogle Scholar
  36. 36.
    Cara PD, Pagliaro M, Elmekawy A, Brown DR, Verschuren P, Shiju NR, Rothenberg G (2013) Catal Sci Technol 3:2057–2061CrossRefGoogle Scholar
  37. 37.
    Bian J, Peng F, Peng XP, Peng P, Xu F, Sun RC (2012) Bioresources 7(4):4626–4639CrossRefGoogle Scholar
  38. 38.
    Lee JW, Park JY, Kwon M, Choi IG (2009) J Biosci Bioeng 107(1):33–37CrossRefGoogle Scholar
  39. 39.
    Liitia T, Sirkka L, Maunu L, Hortling B, Tamminen T, Pekkala O, Varhimo A (2003) Cellulose 10:307–316CrossRefGoogle Scholar
  40. 40.
    Agarwal UP, Reiner RR, Ralph SA (2012) J Agric Food Chem 61:103 – 113CrossRefGoogle Scholar
  41. 41.
    Ahvenainen P, Kontro I, Svedstrom K (2016) Cellulose 23:1073–1086CrossRefGoogle Scholar
  42. 42.
    Gabrielii I, Gatenholm P, Glasser WG, Jain RK, Kenne K (2000) Carbohydr Polym 43:367–374CrossRefGoogle Scholar
  43. 43.
    Park S, Johnson DV, Ishizawa CI, Parilla AP, Davis MF (2009) Cellulose 16:641–647CrossRefGoogle Scholar
  44. 44.
    Timell TE (1967) Wood Sci Technol 1:45–70CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Parizad Sheikhi
    • 1
  • Seyed Rahman Djafari Petroudy
    • 2
  1. 1.Department of Mechanical engineering, Dezful BranchIslamic Azad UniversityDezfulIran
  2. 2.Cellulose Nanotechnology and Carbohydrate Chemistry Laboratory, Department of Biorefinery, Faculty of New Technologies EngineeringShahid Beheshti University (SBU)Zirab, SavadkohIran

Personalised recommendations