Advertisement

Journal of Polymers and the Environment

, Volume 26, Issue 9, pp 3638–3654 | Cite as

Iron Nanoparticles α-Chitin Nanocomposite for Enhanced Antimicrobial, Dyes Degradation and Heavy Metals Removal Activities

  • Eman Zakaria Gomaa
Original Paper
  • 56 Downloads

Abstract

The synthesis of metal nanoparticles has become a matter of great interest in recent years for overcoming various challenges such as infectious diseases and environmental pollutants. In the present study, a green synthesis of iron nanoparticles (FeNP) was performed using aqueous leaf extract of Corchorus olitorius as a reducing and capping agent. Chitin nanoparticles (CNP) were prepared from shells of Penaeus semisulcatus and used for the preparation of iron/chitin nanocomposite. The structure and properties of the synthesized nanoparticles were investigated by UV–Vis spectroscopy, TEM, EDX, XRD and FTIR analyses and then evaluated for their antimicrobial, dyes degradation and heavy metals adsorption activities. FeNP/CNP nanocomposite showed enhanced antimicrobial activity as compared to that of FeNP and CNP alone. A great degradation had been confirmed upon treatment of dyes with FeNP/CNP nanocomposite. It reached 95% for methyl orange at 150 min. Furthermore, the removal efficiency of heavy metals increased with increasing adsorbents concentrations. FeNP/CNP nanocomposite exhibited higher heavy metals removal efficiency than FeNP and in a shorter time. It caused removal percentages of 98.9, 94.2 and 90.3% for Cr3+, Cd2+ and Ni2+, respectively at 30 min. The results confirmed that incorporation of FeNP into CNP improves the properties of FeNP and can be used as a promising strategy to be used as biocompatible antimicrobial and bioremediation agents.

Graphical Abstract

Keywords

Iron nanoparticles Iron/chitin nanocomposite Antimicrobial Dyes degradation Heavy metals removing 

References

  1. 1.
    Lida H, Takayanagi K, Nakanishi T, Osaka T (2007) J Colloid Interface Sci 314:274–280CrossRefGoogle Scholar
  2. 2.
    Shahwan T, Abu Sirriah S, Nairat M, Boyac E, Eroglu A, Scott T, Hallam K (2011) Chem Eng J 172:258–266CrossRefGoogle Scholar
  3. 3.
    Xu C, Sun S (2013) Adv Drug Deliv Rev 65:732–743CrossRefGoogle Scholar
  4. 4.
    Dubey SP, Lahtinen M, Sillanpää M (2010) Colloids Surf A 364:34–41CrossRefGoogle Scholar
  5. 5.
    Vidhu VK, Philip D (2014) Micron 56:54–62CrossRefGoogle Scholar
  6. 6.
    Nahar MK, Zakaria Z, Hashim U, Bari UM (2015) Adv Mater Res 1109:30–34CrossRefGoogle Scholar
  7. 7.
    Sun YP, Li XQ, Zhang WX, Wang HP (2007) Colloids Surf A 308:60–66CrossRefGoogle Scholar
  8. 8.
    Badry MD, Wahba MA, Khaled RK, Farghali AA (2015) Mid E J Appl Sci 5(4):940–944Google Scholar
  9. 9.
    Lee CR, Cho IH, Jeong BC, Lee SH (2013) Int J Environ Res Pub Health 10(9):4274–4305CrossRefGoogle Scholar
  10. 10.
    Manyasree D, Kiranmayi P, Kumar R (2016) Ind Am J Pharm Res 6:5992–5997Google Scholar
  11. 11.
    Ahmed MA, Ali SM, El-Dek SI, Galal A (2013) Mater Sci Eng B 178:744–751CrossRefGoogle Scholar
  12. 12.
    Badruddoza AZ, Shawon ZB, Tay WJ, Hidajat K, Uddin MS (2013) Carbohydr Polym 91:322–332CrossRefGoogle Scholar
  13. 13.
    Gomez-Pastora J, Bringas E, Ortiz I (2014) Chem Eng J 256:187–204CrossRefGoogle Scholar
  14. 14.
    El-Rafie HM, Abd El-Aziz SM, Zahran MK (2016) Der Pharm Lett 8(19):156–164Google Scholar
  15. 15.
    Njagi EC, Huang H, Stafford L, Genuino H, Galindo HM, Collins JB, Suib SL (2011) Langmuir 27(1):264–271CrossRefGoogle Scholar
  16. 16.
    Solairaj D, Palanivel R, Pappu S (2015) J Adv Res 7(1):113–124Google Scholar
  17. 17.
    Goodrich JD, Winter WT (2007) Biomacromol 8:252–257CrossRefGoogle Scholar
  18. 18.
    Solairaj D, Rameshthangam P (2017) J Polym Environ 25:435–452CrossRefGoogle Scholar
  19. 19.
    Perez C, Paul M, Bazerque P (1990) Acta Biol Med Exp 15:113–115Google Scholar
  20. 20.
    Magana SM, Quintana P, Aguilar DH, Toledo JA, Angeles-Chavez C (2008) J Mol Catal A 281:192–199CrossRefGoogle Scholar
  21. 21.
    Lowry OH, Rosebrough N, Farr AL, Randall RJ (1951) J Biol Chem 193:265–275Google Scholar
  22. 22.
    Miller G (1959) Anal Chem 31:426–429CrossRefGoogle Scholar
  23. 23.
    Chen CZ, Cooper SL (2002) Biomaterials 23(16):3359–3368CrossRefGoogle Scholar
  24. 24.
    Al-Saad KA, Amr MA, Hadi DT, Arar RS, AL-Sulaiti MM, Abdulmalik TA, Alsahamary NM, Kwak JC (2012) Arab J Nucl Sci Appl 45(2):335–346Google Scholar
  25. 25.
    Song JY, Kim BS (2009) Bioprocess Biosyst Eng 32:79–84CrossRefGoogle Scholar
  26. 26.
    Hamzah RU, Jigam AA, Makun HA, Egwim EC (2014) Asian J Basis Appl Sci 1(1):1–14Google Scholar
  27. 27.
    Ali-Komi D, Hamblin MR (2016) Int J Adv Res 3:411–427Google Scholar
  28. 28.
    Wysokowski M, Motylenko M, Walter J (2014) RSC Adv 4:61743–61752CrossRefGoogle Scholar
  29. 29.
    Einbu A, Varum KM (2007) Biomacromolecules 8(1):309–314CrossRefGoogle Scholar
  30. 30.
    Wang T, Jin X, Chen Z, Megharaj M, Naidu R (2014) Sci Total Environ 466:210–213CrossRefGoogle Scholar
  31. 31.
    Kavitha AL, Subashini A (2015) Int J Adv Chem Sci Appl 3:20–23Google Scholar
  32. 32.
    Vidya C, Shilpa H, Chandraprabha M, Lourdu A, Indu V, Aayushi J, Kokil B (2013) Int J Curr Eng Technol 1:2277–4106Google Scholar
  33. 33.
    Sajomsang W, Gonil P (2010) Mater Sci Eng C 30:357–363CrossRefGoogle Scholar
  34. 34.
    Nguyen VQ, Ishihara M, Mori Y, Nakamura S, Kishimoto S, Hattori H, Matsui T (2013) J Nanomat 12:49Google Scholar
  35. 35.
    Latha N, Gowri M (2014) Int J Sci Res 3(11):1551–1556Google Scholar
  36. 36.
    Salaberria AM, Fernandes SC, Diaz RH, Labidi J (2015) Carbohydr Polym 116:286–291CrossRefGoogle Scholar
  37. 37.
    Madhumathi K, Kumar PS, Abhilash S, Sreeja V, Tamura H, Manzoor K, Jayakumar R (2010) J Mater Sci 21(2):807–813Google Scholar
  38. 38.
    Nath D, Manhar AK, Gupta K, Saikia D, Das SK, Mandali M (2015) Bull Mat Sci 38:1533–1538CrossRefGoogle Scholar
  39. 39.
    Mahdy SA, Raheed QJ, Kalaichelvan PT (2012) Int J Mod Eng Res 2(1):578–581Google Scholar
  40. 40.
    Prabhu YT, Venkateswara RK, Kumari BS, Kumar VS, Pavani T (2015) Int Nano Lett 5:85–92CrossRefGoogle Scholar
  41. 41.
    Cai X, Zhang B, Liang Y, Zhang J, Yan Y, Chen X, Wu T (2015) Coll Surf B 1:281–289CrossRefGoogle Scholar
  42. 42.
    Noruzi M, Mousivand M (2015) J Appl Chem Res 9:37–50Google Scholar
  43. 43.
    Sunkar S, Nachiyar VC, Karunya A (2013) Res J Pharm Biol Chem Sci 4:1085–1097Google Scholar
  44. 44.
    Rahman N, Abedin Z, Ali HM (2014) Am J Environ Sci 10(2):157–163CrossRefGoogle Scholar
  45. 45.
    Kannan M, Rajarathinam K, Dheeba B, Nageshwari K, Kannan K (2015) Int J Pharm Pharm Sci 7:2 225–229Google Scholar
  46. 46.
    Badmapriya D, Asharani IV (2016) Int J ChemTech Res 9(6):409–416Google Scholar
  47. 47.
    Saiz J, Bringas E, Ortiz I (2014) J Chem Technol Biot 89:909–918CrossRefGoogle Scholar
  48. 48.
    Gupta VK, Nayak A (2012) Chem Eng J 180:81–90CrossRefGoogle Scholar
  49. 49.
    Al-Dokheily ME, Sadoon AJ (2015) Chem Proc Eng Res 34:38–50Google Scholar
  50. 50.
    Seyedi SM, Rabiee H, Shahabadi SM, Borghei SM (2017) Clean Soil Air Water 45(3):1–9CrossRefGoogle Scholar
  51. 51.
    Savina IN, English CJ, Whitby RL, Zheng Y, Leistner A, Mikhalovsky SV, Cundy AB (2011) J Hazard Mat 192:1002–1008CrossRefGoogle Scholar
  52. 52.
    Fang Z, Qiu X, Huang R, Qiu X, Li M (2011) Desalination 280:224–231CrossRefGoogle Scholar
  53. 53.
    Yavuz CT, Prakash A, Mayo JT, Colvin VL (2009) Chem Eng Sci 64:2510–2521CrossRefGoogle Scholar
  54. 54.
    Kim EJ, Lee CS, Chang YY, Chang YS (2013) ACS Appl Mater Int 5:9628–9634CrossRefGoogle Scholar
  55. 55.
    Kyzas GZ, Deliyanni EA (2013) Molecules 18:6193–6214CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biological and Geological Sciences, Faculty of EducationAin Shams UniversityCairoEgypt

Personalised recommendations