Advertisement

Journal of Polymers and the Environment

, Volume 26, Issue 9, pp 3677–3697 | Cite as

Removal of Congo Red from Aqueous Solution by Hydroxyapatite Nanoparticles Loaded on Zein as an Efficient and Green Adsorbent: Response Surface Methodology and Artificial Neural Network-Genetic Algorithm

  • Shima Ghanavati Nasab
  • Abolfazl Semnani
  • Abbas Teimouri
  • Homa Kahkesh
  • Tahereh Momeni Isfahani
  • Saeed Habibollahi
Original Paper
  • 77 Downloads

Abstract

This study is based on the application of hydroxyapatite nanoparticles loaded on Zein (Zein/nHAp) as an efficient adsorbent for the removal of Congo red from aqueous solutions. The properties of the adsorbent were characterized using various techniques including FT-IR, XRD, FE-SEM, and BET. The influence of five parameters such as pH, temperature, contact time, initial dye concentration, and adsorbent dosage on the removal percentage of the dye was investigated. The optimum conditions of 5.83, 34.32 °C, 5.20 min, 392.10 ppm, and 0.007 g were achieved for pH, temperature, contact time, initial dye concentration, and adsorbent dosage, respectively. The maximum removal percentage of 99.48% was obtained under the optimum condition that exhibited high adsorption potential of the used adsorbent. Central composite design (CCD) under response surface methodology and artificial neural network-genetic algorithm (ANN-GA) were utilized for optimization of parameters. Comparison of the results of the two models in terms of coefficient of determination (R2) and mean absolute percentage error confirmed the prediction potential of CCD and ANN-GA. Higher ability and accuracy of ANN-GA in prediction was found based on given results. The experimental equilibrium data were studied by Langmuir, Freundlich, Temkin and Dubinin-Radushkevic isotherm models and explored that the data well presented by Langmuir model with maximum adsorption capacity of 416.66 mg/g. The adsorption kinetic was well-fitted by the pseudo-second-order model. The thermodynamics of the adsorption displayed spontaneous and endothermic nature of the process. Regeneration investigation showed that Zein/nHAp can impressively be reused, indicating that the adsorbent was a promising one for the removal of Congo red from aqueous solution.

Graphical Abstract

Keywords

Adsorption Congo red dye Zein Nanohydroxyapatite Design of experiment Artificial neural network-genetic algorithm 

Notes

Acknowledgements

The authors appreciate Shahrekord University and the Center of Excellence for Mathematics, Shahrekord University. The authors also wish to thank Mehdi Javaheran Yazd for his assistance in various stages of the work.

References

  1. 1.
    You H, Chen J, Yang C, Xu L (2016) Colloids Surf A 509:91–98CrossRefGoogle Scholar
  2. 2.
    Yagub MT, Sen TK, Afroze S, Ang HM (2014) Adv Colloid Interface Sci 209:172–184CrossRefPubMedGoogle Scholar
  3. 3.
    Ghaedi M, Daneshfar A, Ahmadi A, Momeni M (2015) J Ind Eng Chem 21:587–598CrossRefGoogle Scholar
  4. 4.
    Haldorai Y, Shim J-J (2014) Appl Surf Sci 292:447–553CrossRefGoogle Scholar
  5. 5.
    Ahmadi K, Ghaedi M, Ansari A (2015) Spectrochim Acta A Mol Biomol Spectrosc 136:1441–1449CrossRefPubMedGoogle Scholar
  6. 6.
    Hou H, Zhou R, Wu P, Wu L (2012) Chem Eng J 211:336–442CrossRefGoogle Scholar
  7. 7.
    Sharma V, Rekha P, Mohanty P (2016) J Mol Liq 222:1091–1100CrossRefGoogle Scholar
  8. 8.
    Li C, Cui J, Wang F, Peng W, He Y (2016) Desalination Water Treat 57(30):14060–14066CrossRefGoogle Scholar
  9. 9.
    Konicki W, Hełminiak A, Arabczyk W, Mijowska E (2017) J Colloid Interface Sci 497:155–164CrossRefPubMedGoogle Scholar
  10. 10.
    Qiu J, Feng Y, Zhang X, Jia M, Yao J (2017) J Colloid Interface Sci 499:151–158CrossRefPubMedGoogle Scholar
  11. 11.
    Tian Y, Ju B, Zhang S, Hou L (2016) Carbohydr Polym 136:1209–1217CrossRefPubMedGoogle Scholar
  12. 12.
    Serpone N, Horikoshi S, Emeline AV (2010) J Photochem Photobiol C 11(2):114–131CrossRefGoogle Scholar
  13. 13.
    Vidal J, Villegas L, Peralta-Hernández JM, Salazar González R (2016) J Environ Sci Health A 51(4):289–296CrossRefGoogle Scholar
  14. 14.
    Asfaram A, Ghaedi M, Hajati S, Rezaeinejad M, Goudarzi A, Purkait MK (2015) J Taiwan Inst Chem Eng 53:80–91CrossRefGoogle Scholar
  15. 15.
    El-Bindary AA, El-Sonbati AZ, Al-Sarawy AA, Mohamed KS, Farid MA (2015) Spectrochim Acta A Mol Biomol Spectrosc 136:1842–1849CrossRefPubMedGoogle Scholar
  16. 16.
    Li X, Qi Y, Li Y, Zhang Y, He X, Wang Y (2013) Bioresour Technol 142:611–619CrossRefPubMedGoogle Scholar
  17. 17.
    Karimi H, Ghaedi M (2014) J Ind Eng Chem 20(4):2471–2476CrossRefGoogle Scholar
  18. 18.
    Xu H, Zhang Y, Jiang Q, Reddy N, Yang Y (2013) J Environ Manag 125:33–40CrossRefGoogle Scholar
  19. 19.
    Wei W, Sun R, Jin Z, Cui J, Wei Z (2014) Appl Surf Sci 292:1020–1029CrossRefGoogle Scholar
  20. 20.
    Mohammadzadeh A, Ramezani M, Ghaedi A (2016) J Taiwan Inst Chem Eng 59:275–284CrossRefGoogle Scholar
  21. 21.
    Yang L, Wei Z, Zhong W, Cui J, Wei W (2016) Colloids Surf A 490:9–21CrossRefGoogle Scholar
  22. 22.
    Mehrabi F, Vafaei A, Ghaedi M, Ghaedi AM, Dil EA, Asfaram A (2016) Ultrason Sonochem 38:672–680Google Scholar
  23. 23.
    Witek-Krowiak A, Chojnacka K, Podstawczyk D, Dawiec A, Pokomeda K (2014) Bioresour Technol 160:150–160CrossRefPubMedGoogle Scholar
  24. 24.
    Dil EA, Ghaedi M, Asfaram A, Mehrabi F, Bazrafshan AA, Ghaedi AM (2016) Ultrason Sonochem 33:129–140CrossRefPubMedGoogle Scholar
  25. 25.
    Rajendra M, Jena PC, Raheman H (2009) Fuel 88(5):868–875CrossRefGoogle Scholar
  26. 26.
    Teimouri A, Ghanavati Nasab S, Vahdatpoor N, Habibollahi S, Salavati H, Chermahini AN (2016) Int J Biol Macromol 93:254–266CrossRefPubMedGoogle Scholar
  27. 27.
    Teimouri A, Ghanavati Nasab S, Habibollahi S, Fazel-Najafabadi M, Chermahini AN (2015) RSC Adv 5(9):6771–6781CrossRefGoogle Scholar
  28. 28.
    Gao X-Z, Liu H-J, Cheng F, Chen Y (2016) Chem Eng J 283:682–691CrossRefGoogle Scholar
  29. 29.
    Dil EA, Ghaedi M, Ghaedi A, Asfaram A, Jamshidi M, Purkait MK (2016) J Taiwan Inst Chem Eng 59:210–220CrossRefGoogle Scholar
  30. 30.
    Asfaram A, Ghaedi M, Goudarzi A, Rajabi M (2015) Dalton Trans 44(33):14707–14723CrossRefPubMedGoogle Scholar
  31. 31.
    Ghaedi M, Khafri HZ, Asfaram A, Goudarzi A (2016) Spectrochim Acta A Mol Biomol Spectrosc 152:233–240CrossRefPubMedGoogle Scholar
  32. 32.
    Ghaedi M, Ansari A, Bahari F, Ghaedi A, Vafaei A (2015) Spectrochim Acta A Mol Biomol Spectrosc 137:1004–1015CrossRefPubMedGoogle Scholar
  33. 33.
    Asfaram A, Ghaedi M, Azqhandi MA, Goudarzi A, Dastkhoon M (2016) RSC Adv 6(46):40502–40516CrossRefGoogle Scholar
  34. 34.
    Azad FN, Ghaedi M, Asfaram A, Jamshidi A, Hassani G, Goudarzi A et al (2016) RSC Adv 6(24):19768–19779CrossRefGoogle Scholar
  35. 35.
    Dil EA, Ghaedi M, Ghaedi AM, Asfaram A, Goudarzi A, Hajati S et al (2016) J Ind Eng Chem 34:186–197CrossRefGoogle Scholar
  36. 36.
    Ahmadizar F, Soltanian K, AkhlaghianTab F, Tsoulos I (2015) Eng Appl Artif Intell 39:1–13CrossRefGoogle Scholar
  37. 37.
    Escamilla-García M, Calderon-Dominguez G, Chanona-Perez JJ, Farrera-Rebollo RR, Andraca-Adame JA, Arzate-Vazquez I et al (2013) Int J Biol Macromol 61:196–203CrossRefPubMedGoogle Scholar
  38. 38.
    Yao C, Li Y, Wu F (2013) Polym Compos 34(7):1163–1171CrossRefGoogle Scholar
  39. 39.
    Rajiv Gandhi M, Kousalya GN, Meenakshi S (2011) Int J Biol Macromol 48(1):119–124CrossRefPubMedGoogle Scholar
  40. 40.
    Kumar PS, Srinivasan S, Lakshmanan V-K, Tamura H, Nair S, Jayakumar R (2011) Carbohydr Polym 85(3):584–591CrossRefGoogle Scholar
  41. 41.
    Teimouri A, Azadi M (2016) Int J Polym Mater Polym Biomater 65(18):917–927CrossRefGoogle Scholar
  42. 42.
    He J, Wang D, Cui S (2012) Polym Bull 68(6):1765–1776CrossRefGoogle Scholar
  43. 43.
    Asfaram A, Ghaedi M, Hajati S, Goudarzi A (2015) RSC Adv 5(88):72300–72320CrossRefGoogle Scholar
  44. 44.
    Çolak F, Atar N, Olgun A (2009) Chem Eng J 150(1):122–130CrossRefGoogle Scholar
  45. 45.
    Dönmez G, Aksu Z (2002) Process Biochem 38(5):751–762CrossRefGoogle Scholar
  46. 46.
    Somayajula A, Asaithambi P, Susree M, Matheswaran M (2012) Ultrason Sonochem 19(4):803–811CrossRefPubMedGoogle Scholar
  47. 47.
    Ong S-T, Khoo E-C, Keng P-S, Hii S-L, Lee S-L, Hung Y-T et al (2011) Desalination Water Treat 25(1–3):310–318CrossRefGoogle Scholar
  48. 48.
    Aber S, Daneshvar N, Soroureddin SM, Chabok A, Asadpour-Zeynali K (2007) Desalination 211(1–3):87–95CrossRefGoogle Scholar
  49. 49.
    Khayet M, Cojocaru C, Essalhi M (2011) J Membr Sci 368(1):202–214CrossRefGoogle Scholar
  50. 50.
    Sarve A, Sonawane SS, Varma MN (2015) Ultrason Sonochem 26:218–228CrossRefPubMedGoogle Scholar
  51. 51.
    Bingöl D, Hercan M, Elevli S, Kılıç E (2012) Bioresour Technol 112:111–115CrossRefPubMedGoogle Scholar
  52. 52.
    Muthukumaran C, Sivakumar VM, Thirumarimurugan M (2016) J Taiwan Inst Chem Eng 63:354–362CrossRefGoogle Scholar
  53. 53.
    Nassar MY, Ahmed IS, Mohamed TY, Khatab MA (2016) RSC Adv 6(24):20001–20013CrossRefGoogle Scholar
  54. 54.
    Foo K, Hameed B (2010) Chem Eng J 156(1):2–10CrossRefGoogle Scholar
  55. 55.
    Agarwal S, Tyagi I, Gupta VK, Golbaz F, Golikand AN, Moradi O (2016) J Mol Liq 218:494–498CrossRefGoogle Scholar
  56. 56.
    Munagapati VS, Kim D-S (2016) J Mol Liq 220:540–548CrossRefGoogle Scholar
  57. 57.
    Kim Y, Kim C, Choi I, Rengaraj S, Yi J (2004) Environ Sci Technol 38(3):924–931CrossRefPubMedGoogle Scholar
  58. 58.
    Labidi A, Salaberria AM, Fernandes SC, Labidi J, Abderrabba M (2016) J Taiwan Inst Chem Eng 65:140–148CrossRefGoogle Scholar
  59. 59.
    Wu F-C, Tseng R-L, Juang R-S (2001) Water Res 35(3):613–618CrossRefPubMedGoogle Scholar
  60. 60.
    Ho Y-S, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465CrossRefGoogle Scholar
  61. 61.
    Sartape AS, Mandhare AM, Jadhav VV, Raut PD, Anuse MA, Kolekar SS (2013) Arab J Chem 10:S3229–S3238Google Scholar
  62. 62.
    Ghaedi M, Biyareh MN, Kokhdan SN, Shamsaldini S, Sahraei R, Daneshfar A et al (2012) Mater Sci Eng 32(4):725–734CrossRefGoogle Scholar
  63. 63.
    Ghaedi M, Tavallali H, Sharifi M, Kokhdan SN, Asghari A (2012) Spectrochim Acta A Mol Biomol Spectrosc 86:107–114CrossRefPubMedGoogle Scholar
  64. 64.
    Sheibani M, Ghaedi M, Marahel F, Ansari A (2015) Desalination Water Treat 53(3):844–852CrossRefGoogle Scholar
  65. 65.
    Rao VB, Rao SRM (2006) Chem Eng J 116(1):77–84CrossRefGoogle Scholar
  66. 66.
    Annadurai G, Juang R-S, Lee D-J (2002) J Hazard Mater 92(3):263–274CrossRefPubMedGoogle Scholar
  67. 67.
    Bhattacharyya KG, Sharma A (2004) J Environ Manag 71(3):217–229CrossRefGoogle Scholar
  68. 68.
    Mall I, Srivastava V, Kumar G, Mishra I (2006) Colloids Surf A 278(1):175–187CrossRefGoogle Scholar
  69. 69.
    Lei C, Pi M, Jiang C, Cheng B, Yu J (2017) J Colloid Interface Sci 490:242–251CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Shima Ghanavati Nasab
    • 1
  • Abolfazl Semnani
    • 1
  • Abbas Teimouri
    • 2
  • Homa Kahkesh
    • 2
  • Tahereh Momeni Isfahani
    • 3
  • Saeed Habibollahi
    • 2
  1. 1.Department of Chemistry, Faculty of SciencesUniversity of ShahrekordShahrekordIran
  2. 2.Chemistry DepartmentPayame Noor UniversityTehranIran
  3. 3.Department of ChemistryIslamic Azad University-Arak BranchArakIran

Personalised recommendations