Advertisement

Journal of Polymers and the Environment

, Volume 26, Issue 9, pp 3613–3625 | Cite as

Microbial Degradation of UV-Pretreated Low-Density Polyethylene Films by Novel Polyethylene-Degrading Bacteria Isolated from Plastic-Dump Soil

  • Zahra Montazer
  • Mohammad B. Habibi-Najafi
  • Mohabbat Mohebbi
  • Abdulrasool Oromiehei
Original Paper

Abstract

Eleven effective low-density polyethylene (LDPE)-degrading bacterial strains were isolated and identified from landfill soil containing large amounts of plastic materials. The isolates belonged to 8 genera, and included Pseudomonas (areroginosa and putida), Sphingobacterium (moltivorum), Delftia (tsuruhatansis), Stentrophomonas (humi and maltophilia), Ochrobacterum (oryzeae and humi), Micrococcus (luteus), Acinetobacter (pitti), and Citrobacter (amalonaticus). Abiotic degradation of LDPE films by artificial and natural ultraviolet (UV)-exposure was analyzed by FT-IR spectroscopy. LDPE films treated with UV-radiation were also inoculated with the isolates and biofilm production and LDPE degradation were measured. Surface changes to the LDPE induced by bacterial biofilm formation were visualized by Scanning Electron Microscopy. The most active bacterial isolate, IRN19, was able to degrade polyethylene film by 26.8 ± 3.04% gravimetric weight over 4 weeks. Analysis of 16S rRNA sequence of this isolate revealed 96.97% similarity in sequence to Acinetobacter pitti, which has not previously been identified as a polyethylene-degrading bacterium. Also, most the effective biofilm forming isolate, IRN11, displayed the highest cell mass production (6.29 ± 0.06 log cfu/cm2) after growth on LDPE films, showed 98.74% similarity to Sphingobacterium moltivourum.

Keywords

Biodegradation Polyethylene-degrading bacteria Biofilm formation SEM FTIR 

Notes

Acknowledgements

The authors wish to thank Prof. David B. Levin from University of Manitoba for revising the MS and the “Research Center of Mashhad Islamic Council” for partial financial support of this work.

Funding

Funding was provided by Mashhad Islamic City Council Research Center (Grant No. 1310).

References

  1. 1.
    Emadian SM, Onat TT, Demirel B (2017) Biodegradation of bioplastics in natural environments. Waste Manag.  https://doi.org/10.1016/j.wasman.2016.10.006 Google Scholar
  2. 2.
    Harshvardhan K, Jha B (2013) Biodegradation of low-density polyethylene by marine bacteria from pelagic waters Arabian Sea, India. Mar Pollut Bull 77:100–106.  https://doi.org/10.1016/j.marpolbul.2013.10.025 CrossRefGoogle Scholar
  3. 3.
    Wordwatch Institute (2015) Global plastic production rises, recycling lags. http://www.worldwatch.org/global-plastic-production-rises-recycling-lags-0
  4. 4.
    Bergmann M (2015) Marine anthropogenic litter. Springer, Newyork. ISBN 978-3-319-16510-3CrossRefGoogle Scholar
  5. 5.
    Chiellini E, Corti A, D’Antone S (2007) Oxo-biodegradable full carbon backbone polymers e biodegradation behaviour of thermally oxidized polyethylene in an aqueous medium. Polym Degrad Stab 92:1378–1383.  https://doi.org/10.1016/j.polymdegradstab.2007.03.007 CrossRefGoogle Scholar
  6. 6.
    Ojeda T, Freitas A, Dalmolin E, Dal Pizzol M, Vignol L, Melnik J, Jacques R, Bento F, Camargo F (2009) Abiotic and biotic degradation of oxo-biodegradable foamed polystyrene. Polym Degrad Stab 94:2128–2133.  https://doi.org/10.1016/j.polymdegradstab.2009.09.012 CrossRefGoogle Scholar
  7. 7.
    Abrusci C, Pablos J, Corrales T, López-Marín J, Marín I, Catalina F (2011) Biodegradation of photo-degraded mulching films based on polyethylenes and stearates of calcium and iron as pro-oxidant additives. Int Biodeterior Biodegrad 65:451–459.  https://doi.org/10.1016/j.ibiod.2010.10.012 CrossRefGoogle Scholar
  8. 8.
    Abrusci C, Pablos J, Marín I, Espí E, Corrales T, Catalina F (2013) F, Comparative effect of metal stearates as pro-oxidant additives on bacterial biodegradation of thermal- and photo-degraded low density polyethylene mulching films. Int Biodeterior Biodegrad 83:25–32.  https://doi.org/10.1016/j.ibiod.2013.04.002 CrossRefGoogle Scholar
  9. 9.
    Tokiwa Y, Calabia BP, Ugwu CU, Aiba S (2009) Biodegradability of plastics. Int J Mol Sci 10:3722–3742.  https://doi.org/10.3390/ijms10093722 CrossRefGoogle Scholar
  10. 10.
    Shah AA, Hasan F, Hameed A, Ahmed S (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26:246–265.  https://doi.org/10.1016/j.biotechadv.2007.12.005 CrossRefGoogle Scholar
  11. 11.
    Muenmee S, Chiemchaisri W, Chiemchaisri C (2015) Microbial consortium involving biological methane oxidation in relation to the biodegradation of waste plastics in a solid waste disposal open dump site. Int Biodeterior Biodegrad 102:172–181.  https://doi.org/10.1016/j.ibiod.2015.03.015 CrossRefGoogle Scholar
  12. 12.
    Muenmee S, Chiemchaisri W, Chiemchaisri C (2016) Enhancement of biodegradation of plastic wastes via methane oxidation in semi-aerobic landfill. Int Biodeterior Biodegrad 113:244–255.  https://doi.org/10.1016/j.ibiod.2016.03.016 CrossRefGoogle Scholar
  13. 13.
    Veethahavyaa KS, Rajath BS, Noobiab S, Kumar B (2016) Biodegradation of low density polyethylene in aqueous media. Proced Environ Sci 35:709–713.  https://doi.org/10.1016/j.proenv.2016.07.072 CrossRefGoogle Scholar
  14. 14.
    Sahebnazar Z, Shojaosadati SA, Mohammad-Taheri M, Nosrati M (2010) Biodegradation of low-density polyethylene (LDPE) by isolated fungi in solid waste medium. Waste Manag 30:396–401.  https://doi.org/10.1016/j.wasman.2009.09.027 CrossRefGoogle Scholar
  15. 15.
    Sen SK, Raut S (2015) Microbial degradation of low density polyethylene (LDPE): a review. J Environ Chem Eng 3:462–473.  https://doi.org/10.1016/j.jece.2015.01.003 CrossRefGoogle Scholar
  16. 16.
    Thirunavukarasu K, Purushothaman S, Sridevi J, Aarthy M, Gowthaman MK, Nakajima-Kambe T, Kamini NR (2016) Degradation of poly(butylene succinate) and poly(butylenes succinate-co-butylene adipate) by a lipase from yeast Cryptococcus sp. grown on agro-industrial residues. Int Biodeterior Biodegrad 110:99–107.  https://doi.org/10.1016/j.ibiod.2016.03.005 CrossRefGoogle Scholar
  17. 17.
    Sawadogo A, Harmonie OC, Sawadogo JB, Aminata K, Traoré AS, Dianou D (2014) Isolation and characterization of hydrocarbon-degrading bacteria from wastewaters in Ouagadougou, Burkina Faso. J Environ Prot 5:1183–1196.  https://doi.org/10.4236/jep.2014.512115 CrossRefGoogle Scholar
  18. 18.
    Jeon HJ, Kim MN (2014) Degradation of linear low density polyethylene (LLDPE) exposed to UV-irradiation. Eur Polym J 52:146–153.  https://doi.org/10.1016/j.eurpolymj.2014.01.007 CrossRefGoogle Scholar
  19. 19.
    Vimala PP, Mathew L (2016) Biodegradation of polyethylene using Bacillus subtilis. Proced Technol 24:232–239.  https://doi.org/10.1016/j.protcy.2016.05.031 CrossRefGoogle Scholar
  20. 20.
    Jeon HJ, Kim MN (2015) Functional analysis of alkane hydroxylase system derived from Pseudomonas aeruginosa E7 for low molecular weight polyethylene biodegradation. Int Biodeterior Biodegrad 103:141–146.  https://doi.org/10.1016/j.ibiod.2015.04.024 CrossRefGoogle Scholar
  21. 21.
    Watanabea T, Suzuki K, Shinozaki Y, Yarimizua T, Yoshidaa S, Sameshima-Yamashitaa Y, Koitabashi M, Kitamoto HK (2015) A UV-induced mutant of Cryptococcus flavus GB-1 with increased production of a biodegradable plastic-degrading enzyme. Process Biochem 50:1718–1724.  https://doi.org/10.1016/j.procbio.2015.07.005 CrossRefGoogle Scholar
  22. 22.
    Yang Y, Chen J, Wu WM, Zhao J, Yanga J (2016) Characterization of a thermolabile poly(3-hydroxybutyrate) depolymerase from the marine bacterium Shewanella sp. J KCM-AJ-6,1α. Polym Degrad Stab 129:212–221.  https://doi.org/10.1016/j.polymdegradstab.2016.04.022 CrossRefGoogle Scholar
  23. 23.
    Lesley DL, Jenkins K, Cook A (1979) Microbial degradation of polyethylene glycols. J Appl Bacteriol 47:75–85.  https://doi.org/10.1111/j.1365-2672.1979.tb01171.x CrossRefGoogle Scholar
  24. 24.
    Sung CC, Tachibana Y, Suzuki M, Hsieh WC, Kasuya KI (2016) Identification of a poly(3 hydroxybutyrate)-degrading bacterium isolated from coastal seawater in Japan as Shewanella sp. Polym Degrad Stab 129:268–274.  https://doi.org/10.1016/j.polymdegradstab.2016.05.008 CrossRefGoogle Scholar
  25. 25.
    Parmila R, Ramesh VK (2015) Potential biodegradation of low density polyethylene (LDPE) by Acinetobacter bumannii. Afr J Bacteriol Res 7:24–28.  https://doi.org/10.5897/JBR2015.0152 Google Scholar
  26. 26.
    Chia KH, Nanthini J, Thottathil GP, Najimudin N, Hakim MH, Haris MR, Sudesh K (2016) Identification of new rubber-degrading bacterial strains from aged Latex. Polym Degrad stab 109:354–361.  https://doi.org/10.1016/j.polymdegradstab.2014.07.027 CrossRefGoogle Scholar
  27. 27.
    Binneru S, Sorensen OJ (1998) Gram characteristics determined on single cells and at the microcolony level of bacteria immobilized on polycarbonate membrane filters. J Microbiol Methods 31:185–192.  https://doi.org/10.1016/S0167-7012(97)00102-4 CrossRefGoogle Scholar
  28. 28.
    Kumari N, Vashishtha A, Sain S, Menghani E (2013) Isolation, identification and characterization of oil degrading bacteria isolated from the contaminated sites of Barmer, Rajasthan. Int J Biotechnol Bioeng Res 4:429–436Google Scholar
  29. 29.
    Gilan I, Hadar Y, Sivan A (2004) Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber. Appl Microbiol Biotechnol 65:97–104.  https://doi.org/10.1007/s00253-004-1584-8 Google Scholar
  30. 30.
    Sudhakar M, Doble M, Sriyutha MP, Venkatesan R (2008) Marine microbe-mediated biodegradation of low- and high-density polyethylenes. Int Biodeterior Biodegrad 61:203–213CrossRefGoogle Scholar
  31. 31.
    Jopia P, Ruiz-Tagle N, Villagra M, Sossa K, Pantoja S, Rueda L, Urrutia-Briones H (2010) Biofilm growth kinetics of a monomethylamine producing Alphaproteobacteria strain isolated from an anaerobic reactor. Anaerobe 16:19–26.  https://doi.org/10.1016/j.anaerobe.2009.04.007 CrossRefGoogle Scholar
  32. 32.
    Arkatkar A, Juwarkar AA, Bhaduri S, Uppara PV, Doble M (2010) Growth of Pseudomonas and Bacillus biofilms on pretreated polypropylene surface. Int Biodeterior Biodegrad 64:530–536.  https://doi.org/10.1016/j.ibiod.2010.06.002 CrossRefGoogle Scholar
  33. 33.
    Albertsson AC, Andersson SO, Karlsson S (1987) Mechanism of biodegradation of polyethylene. Polym Degrad Stab 18:73–87CrossRefGoogle Scholar
  34. 34.
    Guzik MW, Kenny ST, Duane GF, Casey E, Woods T, Ramesh PB, Nikodinovic-Runic J, Murray M, O’Connor KE (2014) Conversion of post consumer polyethylene to the biodegradable polymer polyhydroxyalkanoates. Appl Microbiol Biotechnol 98:4223–4232CrossRefGoogle Scholar
  35. 35.
    R Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/
  36. 36.
    Mehmood CT, Qazi IA, Hashmi I, Bhargava S, Deepa S (2016) Biodegradation of low density polyethylene (LDPE) modified with dye sensitized titania and starch blend using Stenotrophomonas pavanii. Int Biodeterior Biodegrad 113:276–286.  https://doi.org/10.1016/j.ibiod.2016.01.025 CrossRefGoogle Scholar
  37. 37.
    Kathiresan K (2003) Polythene and plastics-degrading microbes from the mangrove soil. Rev Biol Trop 51:629–633Google Scholar
  38. 38.
    Yamada-Onodera K, Mukumoto H, Katsuyama Y, Saiganji A, Tani Y (2001) Degradation of polyethylene by a fungus, Penicillium simplicissimum YK. Polym Degrad Stab 72:323–327CrossRefGoogle Scholar
  39. 39.
    Lobelle D, Cunliffe M (2011) Early microbial biofilm formation on marine plastic debris. Mar Pollut Bull 62:197–200.  https://doi.org/10.1016/j.marpolbul.2010.10.013 CrossRefGoogle Scholar
  40. 40.
    Hadad D, Geresh S, Sivan A (2005) Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. J Appl Microbiol 98:1093–1100.  https://doi.org/10.1111/j.1365-2672.2005.02553.x CrossRefGoogle Scholar
  41. 41.
    Das MP, Kumar S (2013) Influence of cell surface hydrophobicity in colonization and biofilm formation on LDPE biodegradation. Int J Pharm Pharm Sci 4:690–694Google Scholar
  42. 42.
    Mor R, Sivan A (2008) Biofilm formation and partial biodegradation of polystyrene by the actinomycete Rhodococcus ruber. Biodegradation 19:851–858CrossRefGoogle Scholar
  43. 43.
    Kawaia F, Watanabe M, Shibatac M, Yokoyamad S, Sudatec Y, Hayashid S (2004) Comparative study on biodegradability of polyethylenewax by bacteria and fungi. Polym Degrad Stab 86:105–114.  https://doi.org/10.1016/j.polymdegradstab.2004.03.015 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Food Science and Technology, Faculty of AgricultureFerdowsi University of MashhadMashhadIran
  2. 2.Katam Polymer Co.TehranIran

Personalised recommendations