Advertisement

Journal of Polymers and the Environment

, Volume 26, Issue 8, pp 3511–3519 | Cite as

Impact of Molecular Weight on the Thermal Stability and the Miscibility of Poly(ε-caprolactone)/Polystyrene Binary Blends

  • Al Mamun
  • S. M. Mujibur Rahman
  • Sébastien Roland
  • Rizwan Mahmood
Original Paper

Abstract

Poly(ε-caprolactone) (PCL) and two different molecular weight (6K and 650K) of polystyrene (PS) were mixed in solution to prepare binary blends of PCL/PS with various compositions. The impact of the molecular weight of PS in the blends was studied on thermal stability and miscibility by the thermogravimetric analysis (TGA) and the differential scanning calorimetry (DSC) method. The TGA results under dynamic conditions in an inert atmosphere show that the thermal stability of the blends depends on the length of PS molecules. The increase of the low molecular weight PS into the PCL/PS blend reduces the thermal stability while the high molecular weight PS improves the thermal stability. The crystallization peak temperature, enthalpy, and crystallinity of the blends are found molecular weight dependent; these parameters with blend compositions deviate from linearity of additive law for low molecular weight PS, while they do follow the additive law for high molecular weight PS. A significant melting point depression of PCL crystals with composition was observed for the blends with the incorporation of the low molecular weight PS, while the no significant melting temperature depression was observed for the high molecular weight PS. The experimental results clearly indicate that in the PCL/PS blends, the thermal stability and the interaction between the neat components strongly depend on the molecular weight of the PS.

Keywords

Poly(ε-caprolactone) Polystyrene Molecular weight effect Miscibility Thermal stability 

Notes

Acknowledgements

The authors are grateful to the Chemistry Department, Sultan Qaboos University (SQU), Oman for the experimental facilities. One of the authors (Al Mamun) would like to thanks the Department of Physics of the SQU for hosting him as a Visiting Faculty during which this work has been completed.

Supplementary material

10924_2018_1236_MOESM1_ESM.docx (37 kb)
Supplementary material 1 (DOCX 36 KB)

References

  1. 1.
    Chu B, Hsiao BS (2001) Small-angle X-ray scattering of polymers. Chem Rev 101(6):1727–1762CrossRefPubMedGoogle Scholar
  2. 2.
    Wan Y, Feng G, Shen FH, Laurencin CT, Li X (2008) Biphasic scaffold for annulus fibrosus tissue regeneration. Biomaterials 29(6):643–652CrossRefPubMedGoogle Scholar
  3. 3.
    Li Y, Stein M, Jungnickel BJ (1991) Competition between crystallization and phase separation in polymer blends I. Diffusion controlled supermolecular structures and phase morphologies in poly(ε-caprolactone)/polystyrene blends. Colloid Polym Sci 269(8):772–780CrossRefGoogle Scholar
  4. 4.
    Di Lorenzo ML, Pietra PL, Errico ME, Righetti MC, Angiuli M (2007) Poly(butylene terephthalate)/poly(ε-caprolactone) blends: miscibility and thermal and mechanical properties. Polym Eng Sci 47(3):323–329CrossRefGoogle Scholar
  5. 5.
    Biresaw G, Carriere CJ (2004) Compatibility and mechanical properties of blends of polystyrene with biodegradable polyesters. Compos Part A 35(3):313–320CrossRefGoogle Scholar
  6. 6.
    Woodruff MA, Hutmacher DW (2010) The return of a forgotten polymer Polycaprolactone in the 21st century. Prog Polym Sci 35(10):1217–1256CrossRefGoogle Scholar
  7. 7.
    Utracki LA (2003) Introduction to polymer blends. In: Polymer blends handbook. Springer, Dordrecht, pp 1–122CrossRefGoogle Scholar
  8. 8.
    Goh SH (1993) Thermogravimetric study of the thermal stability of poly(vinyl chloride)/poly(vinyl acetate) blends. Thermochim Acta 215(0):291–296CrossRefGoogle Scholar
  9. 9.
    Klarić I, Roje U, Stipanelov N (1999) Kinetic investigation of thermooxidative degradation of poly(vinyl chloride)/acrylonitrile–butadiene–styrene blends by isothermal thermogravimetric analysis. J Appl Polym Sci 71(5):833–839CrossRefGoogle Scholar
  10. 10.
    McNeill IC (1997) Thermal degradation mechanisms of some addition polymers and copolymers. J Anal Appl Pyrol 40–41(0):21–41CrossRefGoogle Scholar
  11. 11.
    Vanoene H (1972) Modes of dispersion of viscoelastic fluids in flow. J Colloid Interface Sci 40(3):448–467CrossRefGoogle Scholar
  12. 12.
    Rosa DS, Guedes CGF, Casarin F, Bragança FC (2005) The effect of the Mw of PEG in PCL/CA blends. Polym Testing 24(5):542–548CrossRefGoogle Scholar
  13. 13.
    Li B, Esker AR (2007) Blends of poly(ε-caprolactone) and intermediate molar mass polystyrene as langmuir films at the air/water interface. Langmuir 23(2):574–581CrossRefPubMedGoogle Scholar
  14. 14.
    Ma M, He Z, Yang J, Chen F, Wang K, Zhang Q, Deng H, Fu Q (2011) Effect of film thickness on morphological evolution in dewetting and crystallization of polystyrene/poly(ε-caprolactone) blend films. Langmuir 27(21):13072–13081CrossRefPubMedGoogle Scholar
  15. 15.
    Nojima S, Ono M, Ashida T (1992) Crystallization of block copolymers II. Morphological study of poly(ethylene glycol)-poly(ε-caprolactone) block copolymers. Polym J 24(11):1271–1280CrossRefGoogle Scholar
  16. 16.
    Múgica A, Calahorra ME, Cortázar M (2002) Compositional variation of glass-transition temperature in miscible polymer blends involving weak and strong specific interactions. Macromol Chem Phys 203(8):1088–1098CrossRefGoogle Scholar
  17. 17.
    Ruzette A-VG, Mayes AM (2001) A simple free energy model for weakly interacting polymer blends. Macromolecules 34(6):1894–1907CrossRefGoogle Scholar
  18. 18.
    Jin J, Du J, Chen H, Han CC (2011) Fluctuation-assisted nucleation in the phase separation/crystallization of iPP/OBC blends. Polymer 52(26):6161–6172CrossRefGoogle Scholar
  19. 19.
    Ma M, He Z, Li Y, Chen F, Wang K, Zhang Q, Deng H, Fu Q (2012) Surface phase separation, dewetting feature size, and crystal morphology in thin films of polystyrene/poly(ε-caprolactone) blend. J Colloid Interface Sci 387(1):262–269CrossRefPubMedGoogle Scholar
  20. 20.
    Mamun A, Mareau VH, Chen J, Prud’homme RE (2014) Morphologies of miscible PCL/PVC blends confined in ultrathin films. Polymer 55(9):2179–2187CrossRefGoogle Scholar
  21. 21.
    Mamun A, Bazuin CG, Prud’homme RE (2015) Morphologies of various polycaprolactone/polymer blends in ultrathin films. Macromolecules 48(5):1412–1417CrossRefGoogle Scholar
  22. 22.
    Siqueira G, Fraschini C, Bras J, Dufresne A, Prudhomme R, Laborie M-P (2011) Impact of the nature and shape of cellulosic nanoparticles on the isothermal crystallization kinetics of poly(ε-caprolactone). Eur Polym J 47(12):2216–2227CrossRefGoogle Scholar
  23. 23.
    Mamun A, Umemoto S, Okui N, Ishihara N (2007) Self-seeding effect on primary nucleation of isotactic polystyrene. Macromolecules 40(17):6296–6303CrossRefGoogle Scholar
  24. 24.
    Mamun A, Souier MT, Mujibur Rahman SM, Al-Harthi SH, Munam A (2017) Miscibility and thermal stability of ethyl vinyl acetate and ethylene-octane copolymer blends. Polym Sci Ser A 59(3):397–404CrossRefGoogle Scholar
  25. 25.
    Zhang X, Wang Z, Han CC (2006) Fine structures in phase-separated domains of a polyolefin blend via spinodal decomposition. Macromolecules 39(21):7441–7445CrossRefGoogle Scholar
  26. 26.
    Wang H, Shimizu K, Hobbie EK, Wang Z-G, Meredith JC, Karim A, Amis EJ, Hsiao BS, Hsieh ET, Han CC (2001) Phase diagram of a nearly isorefractive polyolefin blend. Macromolecules 35(3):1072–1078CrossRefGoogle Scholar
  27. 27.
    Wu T, Li Y, Zhang D-L, Liao S-Q, Tan H-M (2004) Study on the morphology and properties of metallocene polyethylene and ethylene/vinyl acetate blends. J Appl Polym Sci 91(2):905–910CrossRefGoogle Scholar
  28. 28.
    Nishi T, Wang TT (1975) Melting point depression and kinetic effects of cooling on crystallization in poly(vinylidene fluoride)-poly(methyl methacrylate) mixtures. Macromolecules 8(6):909–915CrossRefGoogle Scholar
  29. 29.
    Eastmond G, Hocker H, Klee D (1999) Biomedical applications polymer blends. Springer, BerlinCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Al Mamun
    • 1
  • S. M. Mujibur Rahman
    • 1
  • Sébastien Roland
    • 2
  • Rizwan Mahmood
    • 3
  1. 1.Department of Physics, College of ScienceSultan Qaboos UniversityMuscatOman
  2. 2.PIMM, ENSAM/CNRS/CNAM, UMR 8006ParisFrance
  3. 3.Department of Physics and EngineeringSlippery Rock UniversitySlippery RockUSA

Personalised recommendations