Advertisement

Journal of Polymers and the Environment

, Volume 26, Issue 8, pp 3493–3501 | Cite as

Completely Bio-based Polyol Production from Sunflower Stalk Saccharification Lignin Residue via Solvothermal Liquefaction Using Biobutanediol Solvent and Application to Biopolyurethane Synthesis

Original Paper
  • 32 Downloads

Abstract

Sunflower stalk saccharification lignin residue was converted to a completely bio-based biopolyol via solvothermal liquefaction using acid catalyst. Different isomer-type biobutanediols were used to replace petroleum-derived reaction solvents. The reaction parameters were optimized according to measurement of the biomass conversion and the hydroxyl and acid numbers. The lignin-derived biopolyol with a biomass conversion of 80.1%, hydroxyl number of 819.0 mg KOH/g, and acid number of 26.5 mg KOH/g was produced in the optimal condition (reaction temperature of 120 °C, 4 wt% acid catalyst loading, reaction time of 120 min, and 25 wt% biomass loading). The lignin-derived biopolyol was neutralized to decrease the acid number. The neutralized biopolyol was used to synthesize biopolyurethane via polymerization with poly(propylene glycol), tolylene 2,4-diisocyanate terminated. Urethane bond formation was confirmed by FT-IR analysis. The biopolyurethane showed good thermal properties, such as a Td5 of 273.4 °C, Td10 of 305.8 °C, and a single degradation peak at 387.2 °C.

Keywords

Sunflower stalk saccharification lignin residue Biobutanediol Solvothermal liquefaction Biopolyol Biopolyurethane 

Notes

Acknowledgements

This work was supported by the R&D Program of the Ministry of Trade, Industry, & Energy (MOTIE)/ Korea Evaluation Institute of Industrial Technology (KEIT) (Project # 10049675). This research was supported by the C1 Gas Refinery Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2015M3D3A1A01064882).

References

  1. 1.
    Mahmood N, Yuan Z, Schmidt J, Xu CC (2016) Depolymerization of lignins and their applications for the preparation of polyols and rigid polyurethane foams: a review. Renew Sust Energy Rev 60:317–329CrossRefGoogle Scholar
  2. 2.
    Gao L, Zheng G, Zhou Y, Hu L, Feng G (2015) Improved mechanical property, thermal performance, flame retardancy and fire behavior of lignin-based rigid polyurethane foam nanocomposite. J Therm Anal Calorim 120(2):1311–1325CrossRefGoogle Scholar
  3. 3.
    Sheikhy H, Shahidzadeh M, Ramezanzadeh B, Noroozi F (2013) Studying the effects of chain extenders chemical structures on the adhesion and mechanical properties of a polyurethane adhesive. J Ind Eng Chem 19(6):1949–1955CrossRefGoogle Scholar
  4. 4.
    Zieleniewska M, Leszczyński MK, Kurańska M, Prociak A, Szczepkowski L, Krzyżowska M, Ryszkowska J (2015) Preparation and characterisation of rigid polyurethane foams using a rapeseed oil-based polyol. Ind Crop Prod 74:887–897CrossRefGoogle Scholar
  5. 5.
    Li HQ, Shao Q, Luo H, Xu J (2016) Polyurethane foams from alkaline lignin-based polyether polyol. J Appl Polym Sci 133(14):43261CrossRefGoogle Scholar
  6. 6.
    Zhang H, Luo J, Li Y, Guo H, Xiong L, Chen X (2013) Acid-catalyzed liquefaction of bagasse in the presence of polyhydric alcohol. Appl Biochem Biotechnol 170(7):1780–1791CrossRefGoogle Scholar
  7. 7.
    Bernardini J, Cinelli P, Anguillesi I, Coltelli MB, Lazzeri A (2015) Flexible polyurethane foams green production employing lignin or oxypropylated lignin. Eur Polym J 64:147–156CrossRefGoogle Scholar
  8. 8.
    Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem Eng 2(5):1072–1092CrossRefGoogle Scholar
  9. 9.
    Hu S, Li Y (2014) Two-step sequential liquefaction of lignocellulosic biomass by crude glycerol for the production of polyols and polyurethane foams. Bioresour Technol 161:410–415CrossRefGoogle Scholar
  10. 10.
    Jasiukaitytė E, Kunaver M, Strlič M (2009) Cellulose liquefaction in acidified ethylene glycol. Cellulose 16(3):393–405CrossRefGoogle Scholar
  11. 11.
    Kim KH, Yu JH, Lee EY (2016) Crude glycerol-mediated liquefaction of saccharification residues of sunflower stalks for production of lignin biopolyols. J Ind Eng Chem 38:175–180CrossRefGoogle Scholar
  12. 12.
    Matsushita Y, Yasuda S (2005) Preparation and evaluation of lignosulfonates as a dispersant for gypsum paste from acid hydrolysis lignin. Bioresour Technol 96(4):465–470CrossRefGoogle Scholar
  13. 13.
    Duval A, Lawoko M (2014) A review on lignin-based polymeric, micro-and nano-structured materials. React Funct Polym 85:78–96CrossRefGoogle Scholar
  14. 14.
    Saito T, Perkins JH, Jackson DC, Trammel NE, Hunt MA, Naskar AK (2013) Development of lignin-based polyurethane thermoplastics. RSC Adv 3(44):21832–21840CrossRefGoogle Scholar
  15. 15.
    Sahoo S, Misra M, Mohanty AK (2011) Enhanced properties of lignin-based biodegradable polymer composites using injection moulding process. Compos Pt A-Appl Sci Manuf 42(11):1710–1718CrossRefGoogle Scholar
  16. 16.
    Yang X, Li N, Lin X, Pan X, Zhou Y (2016) Selective cleavage of the aryl ether bonds in lignin for depolymerization by acidic lithium bromide molten salt hydrate under mild conditions. J Agric Food Chem 64(44):8379–8387CrossRefGoogle Scholar
  17. 17.
    Laurichesse S, Avérous L (2014) Chemical modification of lignins: towards biobased polymers. Prog Polym Sci 39(7):1266–1290CrossRefGoogle Scholar
  18. 18.
    Sequeiros A, Serrano L, Briones R, Labidi J (2013) Lignin liquefaction under microwave heating. J Appl Polym Sci 130(5):3292–3298CrossRefGoogle Scholar
  19. 19.
    Zhang H, Ding F, Luo C, Xiong L, Chen X (2012) Liquefaction and characterization of acid hydrolysis residue of corncob in polyhydric alcohols. Ind Crop Prod 39:47–51CrossRefGoogle Scholar
  20. 20.
    Lee JH, Lee JH, Kim DK, Park CH, Yu JH, Lee EY (2016) Crude glycerol-mediated liquefaction of empty fruit bunches saccharification residues for preparation of biopolyurethane. J Ind Eng Chem 34:157–164CrossRefGoogle Scholar
  21. 21.
    El-barbary MH, Shukry N (2008) Polyhydric alcohol liquefaction of some lignocellulosic agricultural residues. Ind Crop Prod 27(1):33–38CrossRefGoogle Scholar
  22. 22.
    Xu J, Jiang J, Hse CY, Shupe TF (2014) Preparation of polyurethane foams using fractionated products in liquefied wood. J Appl Polym Sci 131(7):40096CrossRefGoogle Scholar
  23. 23.
    Jin Y, Ruan X, Cheng X, Lü Q (2011) Liquefaction of lignin by polyethyleneglycol and glycerol. Bioresour Technol 102(3):3581–3583CrossRefGoogle Scholar
  24. 24.
    Lee JH, Lee EY (2016) Biobutanediol-mediated liquefaction of empty fruit bunch saccharification residues to prepare lignin biopolyols. Bioresour Technol 208:24–30CrossRefGoogle Scholar
  25. 25.
    Lee S, Kim B, Park K, Um Y, Lee J (2012) Synthesis of pure meso-2, 3-butanediol from crude glycerol using an engineered metabolic pathway in Escherichia coli. Appl Biochem Biotechnol 166(7):1801–1813CrossRefGoogle Scholar
  26. 26.
    Park JM, Rathnasingh C, Song H (2015) Enhanced production of (R, R)-2, 3-butanediol by metabolically engineered Klebsiella oxytoca. J Ind Microbiol Biotechnol 42(10):1419–1425CrossRefGoogle Scholar
  27. 27.
    Yim H, Haselbeck R, Niu W et al (2011) Metabolic engineering of Escherichia coli for direct production of 1, 4-butanediol. Nat Chem Biol 7(7):445–452CrossRefGoogle Scholar
  28. 28.
    Lee EY, Hwang IY, Oh SH (2017) Process for preparing 2,3-butanediol using transformant, KR patent 10-2017-0003301Google Scholar
  29. 29.
    Li C, Luo X, Li T, Tong X, Li Y (2014) Polyurethane foams based on crude glycerol-derived biopolyols: one-pot preparation of biopolyols with branched fatty acid ester chains and its effects on foam formation and properties. Polymer 55(25):6529–6538CrossRefGoogle Scholar
  30. 30.
    Luo X, Hu S, Zhang X, Li Y (2013) Thermochemical conversion of crude glycerol to biopolyols for the production of polyurethane foams. Bioresour Technol 139:323–329CrossRefGoogle Scholar
  31. 31.
    Lu J, Li X, Yang R, Zhao J, Liu Y, Qu Y (2014) Liquefaction of fermentation residue of reed-and corn stover-pretreated with liquid hot water in the presence of ethanol with aluminum chloride as the catalyst. Chem Eng J 247:142–151CrossRefGoogle Scholar
  32. 32.
    Demirbaş A (2000) Mechanisms of liquefaction and pyrolysis reactions of biomass. Energy Convers Manag 41(6):633–646CrossRefGoogle Scholar
  33. 33.
    Lee SH, Yoshioka M, Shiraishi N (2000) Liquefaction of corn bran (CB) in the presence of alcohols and preparation of polyurethane foam from its liquefied polyol. J Appl Polym Sci 78(2):319–325CrossRefGoogle Scholar
  34. 34.
    Chen F, Lu Z (2009) Liquefaction of wheat straw and preparation of rigid polyurethane foam from the liquefaction products. J Appl Polym Sci 111(1):508–516CrossRefGoogle Scholar
  35. 35.
    Hu S, Luo X, Li Y (2014) Polyols and polyurethanes from the liquefaction of lignocellulosic biomass. ChemSusChem 7(1):66–72CrossRefGoogle Scholar
  36. 36.
    Cateto CA, Barreiro MF, Rodrigues AE, Belgacem MN (2009) Optimization study of lignin oxypropylation in view of the preparation of polyurethane rigid foams. Ind Eng Chem Res 48(5):2583–2589CrossRefGoogle Scholar
  37. 37.
    Hu S, Wan C, Li Y (2012) Production and characterization of biopolyols and polyurethane foams from crude glycerol based liquefaction of soybean straw. Bioresour Technol 103(1):227–233CrossRefGoogle Scholar
  38. 38.
    Jo YJ, Ly HV, Kim J, Kim SS, Lee E (2015) Preparation of biopolyol by liquefaction of palm kernel cake using PEG# 400 blended glycerol. J Ind Eng Chem 29:304–313CrossRefGoogle Scholar
  39. 39.
    Khonsari YN, Mirshokraei SA, Abdolkhani A (2013) Dissolution of wood flour and lignin in 1-butyl-3-methyl-1-imidazolium chloride. Orient J Chem 29(3):889–904CrossRefGoogle Scholar
  40. 40.
    Wu G, He X, Xu L, Zhang H, Yan Y (2015) Synthesis and characterization of biobased polyurethane/SiO 2 nanocomposites from natural Sapium sebiferum oil. RSC Adv 5(34):27097–27106CrossRefGoogle Scholar
  41. 41.
    Ciobanu C, Ungureanu M, Ignat L, Ungureanu D, Popa VI (2004) Properties of lignin–polyurethane films prepared by casting method. Ind Crop Prod 20(2):231–241CrossRefGoogle Scholar
  42. 42.
    Qin J, Woloctt M, Zhang J (2013) Use of polycarboxylic acid derived from partially depolymerized lignin as a curing agent for epoxy application. ACS Sustain Chem Eng 2(2):188–193CrossRefGoogle Scholar
  43. 43.
    Park SJ, Cho KS (2003) Filler–elastomer interactions: influence of silane coupling agent on crosslink density and thermal stability of silica/rubber composites. J Colloid Interface Sci 267(1):86–91CrossRefGoogle Scholar
  44. 44.
    Datta J, Glowinska E (2014) Effect of hydroxylated soybean oil and bio-based propanediol on the structure and thermal properties of synthesized bio-polyurethanes. Ind Crop Prod 61:84–91CrossRefGoogle Scholar
  45. 45.
    Glowinska E, Datta J (2014) A mathematical model of rheological behavior of novel bio-based isocyanate-terminated polyurethane prepolymers. Ind Crop Prod 60:123–129CrossRefGoogle Scholar
  46. 46.
    Glowinska E, Datta J (2016) Bio polyetherurethane composites with high content of natural ingredients: hydroxylated soybean oil based polyol, bio glycol and microcrystalline cellulose. Cellulose 23(1):581–592CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical EngineeringKyung Hee UniversitySeoulRepublic of Korea
  2. 2.Convergence Biochemistry Division, Center for Bio-based ChemistryKorea Research Institute of Chemical TechnologyDaejeonRepublic of Korea

Personalised recommendations