Journal of Polymers and the Environment

, Volume 26, Issue 8, pp 3484–3492 | Cite as

Effects of MCC Content on the Structure and Performance of PLA/MCC Biocomposites

  • Xiaojing Xian
  • Xiaofeng Wang
  • Yanchao Zhu
  • Yutong Guo
  • Yumei TianEmail author
Original Paper


Green composites of polylactic acid (PLA) with microcrystalline cellulose (MCC) as reinforcement of the polymer matrix were produced by melt blending to improve the brittleness of PLA. The MCC was prepared by hydrolysis of wheat straw cellulose with sulfuric acid to remove amorphous area. The biocomposites were prepared with different MCC contents (2, 4, 6, 8 wt%). Scanning electron microscopy, thermogravimetric analysis, X-ray diffraction, differential scanning calorimetry, Fourier transform infrared and mechanical testing were used to study the structure and properties of MCC and biocomposites. The tensile modulus and the strength of PLA/MCC biocomposites increased from 206 to 262 MPa and from 67.35 to 73.01 MPa, respectively.


Wheat straw cellulose Microcrystalline cellulose Polylactic acid matrix Biocomposites Mechanical and thermal properties 



This work was supported by the Jilin Scientific and Technological Development Program, China (No. 20180101287JC), the National Nature Science Foundation of China (No. 51502108) and the Foundation of Jilin Provence Development and Reform Commission, China (No. 2014N145).


  1. 1.
    Fortunati E, Armentano I, Zhou Q, Iannoni A, Saino E, Visai L, Berglund LA, Kenny JM (2012) Multifunctional bionanocomposite films of poly(lactic acid), cellulose nanocrystals and silver nanoparticles. Carbohydr Polym 87:1596–1605CrossRefGoogle Scholar
  2. 2.
    Faruk O, Bledzki AK, Fink HP, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596CrossRefGoogle Scholar
  3. 3.
    Jiang Y, Woortman AJJ, van Ekenstein GORA., Loos K (2015) Environmentally benign synthesis of saturated and unsaturated aliphatic polyesters via enzymatic polymerization of biobased monomers derived from renewable resources. Polym Chem 6:5451–5463CrossRefGoogle Scholar
  4. 4.
    Lim LT, Auras R, Rubino M (2008) Processing technologies for poly(lactic acid). Prog Polym Sci 33:820–852CrossRefGoogle Scholar
  5. 5.
    Raquez JM, Habibi Y, Murariu M, Dubois P (2013) Polylactide (PLA)-based nanocomposites. Prog Polym Sci 38:1504–1542CrossRefGoogle Scholar
  6. 6.
    Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44(22):3358–3393CrossRefGoogle Scholar
  7. 7.
    Trache D, Hussin MH, Chuin CTH, Sabar S, Fazita MRN, Taiwo OFA, Hassan TM, Haafiz MKM (2016) Microcrystalline cellulose: Isolation, characterization and bio-composites application-A review. Int J Biol Macromol 93:789–804CrossRefPubMedGoogle Scholar
  8. 8.
    Kassaye S, Pant KK, Jain S (2016) Synergistic effect of ionic liquid and dilute sulphuric acid in the hydrolysis of microcrystalline cellulose. Fuel Process Technol 148:289–294CrossRefGoogle Scholar
  9. 9.
    Mohamad HMK, Eichhorn SJ, Hassan A, Jawaid M (2013) Isolation and characterization of microcrystalline cellulose from oil palm biomass residue. Carbohydr Polym 93:628–634CrossRefGoogle Scholar
  10. 10.
    Oksman K, Mathew AP, Bondeson D, Kvien I (2006) Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos Sci Technol 66:2776–2784CrossRefGoogle Scholar
  11. 11.
    Butera G, De Pasquale C, Maccotta A, Alonzo G, Conte P (2011) Thermal transformation of micro-crystalline cellulose in phosphoric acid. Cellulose 18:1499–1507CrossRefGoogle Scholar
  12. 12.
    Cheng M, Qin ZY, Chen YY, Hu S, Ren ZC, Zhu MF (2017) Efficient extraction of cellulose nanocrystals through hydrochloric acid hydrolysis catalyzed by inorganic chlorides under hydrothermal conditions. ACS Sustain Chem Eng 5:4656–4664CrossRefGoogle Scholar
  13. 13.
    Miao C, Hamad WY (2013) Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose 20:2221–2262CrossRefGoogle Scholar
  14. 14.
    Naduparambath S, Purushothaman E (2016) Sago seed shell: determination of the composition and isolation of microcrystalline cellulose (MCC). Cellulose 23:1803–1812CrossRefGoogle Scholar
  15. 15.
    Chuayjuljit S, Su-uthai S, Charuchinda S (2009) Poly(vinyl chloride) film filled with microcrystalline cellulose prepared from cotton fabric waste: properties and biodegradability study. Waste Manag Res 28:109–117CrossRefPubMedGoogle Scholar
  16. 16.
    Xiang LY, MA PM, Samsu Baharuddin A (2016) Characterisation of microcrystalline cellulose from oil palm fibres for food applications. Carbohydr Polym 148:11–20CrossRefPubMedGoogle Scholar
  17. 17.
    Singh MP, Kanawjia SK, Giri A, Khetra Y (2015) Effect of temperature and microcrystalline cellulose on moisture sorption characteristics of shredded mozzarella cheese. J Food Process Pres 39:521–529CrossRefGoogle Scholar
  18. 18.
    Merci A, Urbano A, Grossmann MVE, Tischer CA, Mali S (2015) Properties of microcrystalline cellulose extracted from soybean hulls by reactive extrusion. Food Res Int 73:38–43CrossRefGoogle Scholar
  19. 19.
    Jahan MS, Saeed A, He ZB, Ni YH (2011) Jute as raw material for the preparation of microcrystalline cellulose. Cellulose 18:451–459CrossRefGoogle Scholar
  20. 20.
    Fahma F, Iwamoto S, Hori N, Iwata T, Takemura A (2010) Isolation, preparation, and characterization of nanofibers from oil palm empty-fruit-bunch (OPEFB). Cellulose 17:977–985CrossRefGoogle Scholar
  21. 21.
    Auxenfans T, Buchoux S, Djellab K, Avondo C, Husson E, Sarazin C (2012) Mild pretreatment and enzymatic saccharification of cellulose with recycled ionic liquids towards one-batch process. Carbohydr Polym 90:805–813CrossRefPubMedGoogle Scholar
  22. 22.
    Cai H, Li CZ, Wang AQ, Xu GL, Zhang T (2012) Zeolite-promoted hydrolysis of cellulose in ionic liquid, insight into the mutual behavior of zeolite, cellulose and ionic liquid. Appl Catal B 123:333–338CrossRefGoogle Scholar
  23. 23.
    Jonoobi M, Harun J, Mathew AP, Oksman K (2010) Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 70:1742–1747CrossRefGoogle Scholar
  24. 24.
    Kim DH, Kang HJ, Song YS (2013) Rheological and thermal characteristics of three-phase eco-composites. Carbohydr Polym 92:1006–1011CrossRefPubMedGoogle Scholar
  25. 25.
    Oguz O, Bilge K, Simsek E, Citak MK, Wis AA, Ozkoc G, Menceloglu YZ (2017) High-performance green composites of poly(lactic acid) and waste cellulose fibers prepared by high-shear thermokinetic mixing. Ind Eng Chem Res 56:8568–8579CrossRefGoogle Scholar
  26. 26.
    Dogu B, Kaynak C (2015) Behavior of polylactide/microcrystalline cellulose biocomposites: effects of filler content and interfacial compatibilization. Cellulose 23:611–622CrossRefGoogle Scholar
  27. 27.
    Ibrahim AN, Wahit MU, Yussuf AA (2014) Effect of fiber reinforcement on mechanical and thermal properties of poly(ɛ-caprolactone)/poly(lactic acid) blend composites. Fiber Polym 15:574–582CrossRefGoogle Scholar
  28. 28.
    Mathew AP, Oksman K, Sain M (2005) Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). J Appl Polym Sci 97:2014–2025CrossRefGoogle Scholar
  29. 29.
    Dong F, Yan ML, Jin CD, Li SJ (2017) Characterization of type-II acetylated cellulose nanocrystals with various degree of substitution and its compatibility in PLA films. Polymer 9:346CrossRefGoogle Scholar
  30. 30.
    Li H, Cao Z, Wu D, Tao G, Zhong W, Zhu H, Qiu P, Liu C (2016) Crystallisation, mechanical properties and rheological behaviour of PLA composites reinforced by surface modified microcrystalline cellulose. Plast Rubber Compos 45:181–187CrossRefGoogle Scholar
  31. 31.
    Pei A, Zhou Q, Berglund LA (2010) Functionalized cellulose nanocrystals as biobased nucleation agents in poly(l-lactide) (PLLA)—crystallization and mechanical property effects. Compos Sci Technol 70:815–821CrossRefGoogle Scholar
  32. 32.
    Saeidlou S, Huneault MA, Li HB, Park CB (2012) Poly(lactic acid) crystallization. Prog Polym Sci 37:1657–1677CrossRefGoogle Scholar
  33. 33.
    Oh SY, Yoo D, Shin Y, Seo G (2005) FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydr Res 340:417–428CrossRefPubMedGoogle Scholar
  34. 34.
    Elanthikkal S, Gopalakrishnapanicker U, Varghese S, Guthrie JT (2010) Cellulose microfibres produced from banana plant wastes: isolation and characterization. Carbohydr Polym 80:852–859CrossRefGoogle Scholar
  35. 35.
    Rosa SML, Rehman N, de Miranda MIG, Nachtigall SMB, Bica CID (2012) Chlorine-free extraction of cellulose from rice husk and whisker isolation. Carbohydr Polym 87:1131–1138CrossRefGoogle Scholar
  36. 36.
    Das K, Ray D, Bandyopadhyay NR, Ghosh T, Mohanty AK, Misra M (2009) A study of the mechanical, thermal and morphological properties of microcrystalline cellulose particles prepared from cotton slivers using different acid concentrations. Cellulose 16:783–793CrossRefGoogle Scholar
  37. 37.
    Cao Z, Lu Y, Zhang C, Zhang Q, Zhou A, Hu YC, Wu D, Tao GL, Gong FH, Ma WZ, Liu CL (2017) Effects of the chain-extender content on the structure and performance of poly(lactic acid)-poly(butylene succinate)-microcrystalline cellulose composites. J Appl Polym Sci 134:44895Google Scholar
  38. 38.
    Guo YC, He S, Zuo XH, Xue Y, Chen ZH, Chang CC, Weil E, Rafailovich M (2017) Incorporation of cellulose with adsorbed phosphates into poly (lactic acid) for enhanced mechanical and flame retardant properties. Polym Degrad Stab 144:24–32CrossRefGoogle Scholar
  39. 39.
    Guo YC, Yang K, Zuo XH, Xue Y, Marmorat C, Liu Y, Chang CC, Rafailovich MH (2016) Effects of clay platelets and natural nanotubes on mechanical properties and gas permeability of poly (lactic acid) nanocomposites. Polymer 83:246–259CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Xiaojing Xian
    • 1
  • Xiaofeng Wang
    • 1
  • Yanchao Zhu
    • 1
  • Yutong Guo
    • 1
  • Yumei Tian
    • 1
    Email author
  1. 1.College of ChemistryJilin UniversityChangchunPeople’s Republic of China

Personalised recommendations