Journal of Polymers and the Environment

, Volume 26, Issue 8, pp 3334–3344 | Cite as

Two-step Conversion of Crude Glycerol Generated by Biodiesel Production into Biopolyols: Synthesis, Structural and Physical Chemical Characterization

  • Aleksander HejnaEmail author
  • Paulina Kosmela
  • Marek Klein
  • Krzysztof Formela
  • Milena Kopczyńska
  • Józef Haponiuk
  • Łukasz Piszczyk
Original Paper


In this work biopolyols were synthesized via two-step process from crude glycerol and castor oil. For better evaluation of analyzed process, the impact of its time and temperature on the structure and properties of biopolyols was determined. Obtained results fully justified conducting of synthesis in two steps. Prepared materials were characterized by hydroxyl value and water content comparable to polyols industrially applied in manufacturing of polyurethane materials. Synthesized biopolyols were characterized in terms of their chemical structure using spectroscopic techniques: Fourier transform infrared (FTIR) spectroscopy and nuclear magnetic resonance spectroscopy. Obtained data confirmed the influence of synthesis’ parameters on the chemical structure of prepared biopolyols and correlated with their other parameters. On both stages of reaction, collected by-products were also analyzed with FTIR spectroscopy.


Crude glycerol Polycondensation Biopolyol Castor oil Chemical structure 


  1. 1.
    Puri M, Abraham RE, Barrow CJ (2012) Renew Sust Energy Rev 16:6022CrossRefGoogle Scholar
  2. 2.
    Yazdani SS, Gonzalez R (2007) Curr Opin Biotechnol 18:213CrossRefPubMedGoogle Scholar
  3. 3.
    Martin A, Richter M (2011) Eur J Lipid Sci Technol 113:100CrossRefGoogle Scholar
  4. 4.
    Oudshoorn MHM, Rissmann R, Bouwstra JA, Hennink WE (2006) Biomaterials 27:5471CrossRefPubMedGoogle Scholar
  5. 5.
    Melero JA, Vicente G, Paniagua M, Morales G, Muñoz P (2012) Bioresour Technol 103:142CrossRefPubMedGoogle Scholar
  6. 6.
    Hejna A, Kosmela P, Formela K, Piszczyk Ł, Haponiuk JT (2016) Renew Sust Energy Rev 66:449CrossRefGoogle Scholar
  7. 7.
    Gholami Z, Abdulla AZ, Lee KT (2014) Renew Sust Energy Rev 39:327CrossRefGoogle Scholar
  8. 8.
    Salehpour S, Dubé MA (2012) Macromol React Eng 6:85CrossRefGoogle Scholar
  9. 9.
    Gandini A, Lacerda TM (2015) Prog Polym Sci 48:1CrossRefGoogle Scholar
  10. 10.
    Hu S (2013) A Dissertation submitted to The Ohio State University, ColumbusGoogle Scholar
  11. 11.
    Luo X, Hu S, Zhang X, Li Y (2013) Bioresour Technol 139:323CrossRefPubMedGoogle Scholar
  12. 12.
    Ionescu M, Petrovic ZS (2010) J Cell Plast 46:223CrossRefGoogle Scholar
  13. 13.
    Haponiuk J, Piszczyk Ł, Danowska M, Strankowski M (2014) Patent application P.408610Google Scholar
  14. 14.
    Wirpsza Z, Banasiak S (2012) Patent PL 210779Google Scholar
  15. 15.
    Miyata A, Tsutsui T, Konga N, Matsumoto S, Ohkubo K (2012) Patent EP2080778Google Scholar
  16. 16.
    De Meulenaer VB, Huyghebaert A (2000) Chromatographia 51:44CrossRefGoogle Scholar
  17. 17.
    Kainthan RK, Muliawan EB, Hatzikiriakos SG, Brooks DE (2006) Macromolecules 39:7708CrossRefGoogle Scholar
  18. 18.
    Cassel S, Debaig C, Benvegnu T, Chaimbault P, Lafosse M, Plusquellec D, Rollin P (2001) Eur J Org Chem 2001:875CrossRefGoogle Scholar
  19. 19.
    Kumar TN, Sastry YSR, Lakshiminarayana G (1984) J Chromatogr 298:360CrossRefGoogle Scholar
  20. 20.
    Mubofu EB (2016) Sustain Chem Process 4:11CrossRefGoogle Scholar
  21. 21.
    IUPAC (1997) Compendium of chemical terminology, 2nd edn. IUPAC, ZurichGoogle Scholar
  22. 22.
    Wang Y, Wu J, Wan Y, Lei H, Yu F, Chen P, Lin X, Liu Y, Ruan R (2009) Int J Agric Biol Eng 2:32Google Scholar
  23. 23.
    Garti N, Aserin A, Zaidman B (1981) J Am Oil Chem Soc 58:878CrossRefGoogle Scholar
  24. 24.
    Krishnamurthi P, Ramalingam HB, Raju K (2015) Adv Appl Sci Res 6:44Google Scholar
  25. 25.
    Ahmed MK, McLeod MP, Nézivar J, Giuliani AW (2010) Spectroscopy 24:601CrossRefGoogle Scholar
  26. 26.
    Parvulescu A, Rossi M, Della Pina C, Ciriminna R, Pagliaro M (2011) Green Chem 13:143CrossRefGoogle Scholar
  27. 27.
    Coleman MM, Skovanek DJ, Hu J, Painter PC (1988) Macromolecules 21:59CrossRefGoogle Scholar
  28. 28.
    Ushikusa T (1990) Jpn J Appl Phys 29:2460CrossRefGoogle Scholar
  29. 29.
    Vlahov G (1999) Prog Nucl Mag Res Spectrosc 35:341CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Tech-Plast Aleksander HejnaRotmankaPoland
  2. 2.Department of Polymer Technology, Chemical FacultyGdańsk University of TechnologyGdańskPoland
  3. 3.Renewable Energy Department, The Szewalski Institute of Fluid-Flow MachineryPolish Academy of SciencesGdańskPoland

Personalised recommendations