Journal of Polymers and the Environment

, Volume 26, Issue 8, pp 3262–3271 | Cite as

Characteristic Properties of Novel Organosolv Lignin/Polylactide/Delta-Valerolactone Terpolymers

  • Stephanie B. HarrisEmail author
  • Ulrike W. Tschirner
  • Adam Gillespie
  • Madeleine J. Seeger
Original Paper


Compostable terpolymers of l-lactide (LLA), delta-valerolactone (DVL), and switchgrass organosolv lignin (OSL) were synthesized via ring-opening polymerization to improve on polylactide homopolymer properties for commercial applications. OSL has properties that improve some of the deficiencies of polylactide, including polylactide’s limitations for use in food, beverage and medical applications due to its high water permeability and low ultraviolet light (UV) blocking capabilities. DVL was incorporated into these polymers to add flexibility. The addition of DVL to the polymer had a positive effect on the tensile strain properties of the resultant terpolymer, resulting in a more flexible polymer with a reduced Young’s modulus. Water vapor transmission rate calculations confirmed that water vapor was transported more slowly through terpolymer films than through the PLLA homopolymer under varying hygrostatic conditions. While the addition of DVL increased UV permeability, the addition of even a small amount of lignin can effectively counteract this effect.


Biobased compostable terpolymers Polylactide–co-delta-valerolactone–co-lignin terpolymer (PLLA–DVL–OSL) Polymer degradation rate Water vapor transmission rate Water permeability 



Funding for this work provided by the Pawek Fellowship and the Department of Bioproducts and Biosystems Engineering at the University of Minnesota. Parts of this work were carried out in the Characterization Facility, University of Minnesota, which receives partial support from NSF through the MRSEC program and the University of Minnesota Nano Center.


  1. 1.
    Eisberg N (2015) Chem Ind 7:1846–1848Google Scholar
  2. 2.
    Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S (2010) Compr Rev Food Sci Saf 9(5):552–571CrossRefGoogle Scholar
  3. 3.
    Chung YO (2013) Sustain Chem Eng 1:1231–1238CrossRefGoogle Scholar
  4. 4.
    Harris S, Tschirner UW, Lemke N, van Lierop JL (2017) J Wood Chem Technol 37(3):211–224CrossRefGoogle Scholar
  5. 5.
    Sarkanen K (1979) In: Varmavuori A (ed) 27th international congress of pure and applied chemistry, Helsinki, pp 299–306Google Scholar
  6. 6.
    Kautto J, Realff MJ, Ragauskas AJ, Kassi T (2014) BioResources 9(4):6041–6072CrossRefGoogle Scholar
  7. 7.
    Campbell MM, Sederoff RR (1996) Plant Phys 110:3–13CrossRefGoogle Scholar
  8. 8.
    Lignoworks (2016) Accessed 18 Feb 2018
  9. 9.
    Xiong M, Schneiderman DK, Bates FS, Hillmyer MA, Zhang K (2014) Proc Natl Acad Sci 111:8357–8362CrossRefPubMedGoogle Scholar
  10. 10.
    Zhou Q, Xanthos M (2008) Poly Degrad Stab 93:1450–1459CrossRefGoogle Scholar
  11. 11.
    Fernandez J, Larraňaga A, Etxeberria A, Sarasua JR (2014) J Mech Behav Biomed Mater 35:39–50CrossRefPubMedGoogle Scholar
  12. 12.
    Fukuzaki H, Yoshida M, Asano M, Kumakura M (1989) J Control Release 10:293–303CrossRefGoogle Scholar
  13. 13.
    Fernandez J, Larranaga A, Etxeberria A, Sarasua JR (2014) J Mech Behav Biomed Mater 35:39–50CrossRefPubMedGoogle Scholar
  14. 14.
    Fernandez J, Etxeberria A, Sarasua JR (2015) Poly Degrad Stab 112:104–116CrossRefGoogle Scholar
  15. 15.
    Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2012) Determination of structural carbohydrates and lignin in biomass. National Renewable Energy Laboratory, Golden (NREL TP-510-42618)Google Scholar
  16. 16.
    Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2012) Determination of ash in biomass. National Renewable Energy Laboratory, Golden (NREL/TP-510-42622)Google Scholar
  17. 17.
    TAPPI UM 250 (1990) TAPPI useful methods 1991. TAPPI Press, AtlantaGoogle Scholar
  18. 18.
    Gellerstedt G, Henriksson G (1992) Gel permeation chromatography. In: Lin SY, Dence CW (eds) Methods in lignin chemistry. Springer, New York, p 491Google Scholar
  19. 19.
    Sichina WA (2000) In: DSC as problem solving tool: measurement of percent crystallinity of thermoplastics. PerkinElmer Instruments, International Marketing Manager, NorwalkGoogle Scholar
  20. 20.
    Henton DG (2005) In: Mohanty AM (ed) Polylactic acid technology. CRC Press, New York, pp 527–577Google Scholar
  21. 21.
    Pyda M (ed) (2014) Springer, Heidlberg. Accessed 14 Aug 2017
  22. 22.
    ASTM D638 (2014) Standard test methods for tensile properties of plastics. ASTM International, West ConshohockenGoogle Scholar
  23. 23.
    Petinakis E, Liu X, Yu L, Way C, Sangwan P, Dean K, Bateman S, Edward G (2010) Polym Degrad Stab 95:1704–1707CrossRefGoogle Scholar
  24. 24.
    ASTM E96 (2014) Standard test methods for water vapor transmission of materials. ASTM International, West ConshohockenGoogle Scholar
  25. 25.
    Labuza T (1984) Moisture sorption: practical aspects of isotherm measurement and use. American Association of Cereal Chemists, Saint PaulGoogle Scholar
  26. 26.
    Arcana M, Bundjali B, Hasa M, Mariani H, Anggraini SD (2001) Jurnl Matematica dan Sains, Maret 13(1):22–28Google Scholar
  27. 27.
    Cambridge University Engineering Department (2003) Materials data book, vol 12. Cambridge University, CambridgeGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Stephanie B. Harris
    • 1
    Email author
  • Ulrike W. Tschirner
    • 1
  • Adam Gillespie
    • 1
  • Madeleine J. Seeger
    • 1
  1. 1.Department of Bioproducts and Biosystems EngineeringUniversity of MinnesotaSaint PaulUSA

Personalised recommendations