Advertisement

Journal of Polymers and the Environment

, Volume 26, Issue 8, pp 3176–3186 | Cite as

Effect of Hydrothermal Aging on Injection Molded Short Jute Fiber Reinforced Poly(Lactic Acid) (PLA) Composites

  • Ning Jiang
  • Tao Yu
  • Yan Li
Original Paper

Abstract

This work focused on the durability of short jute fiber reinforced poly(lactic acid) (PLA) composites in distilled water at different temperatures (23, 37.8 and 60 °C). Morphological, thermal and mechanical properties (tensile, flexural, and impact) of jute/PLA composites were investigated before and after aging. Different from traditional synthetic fiber reinforced polymer composites, the stability of jute/PLA composites in water was significantly influenced by hydrothermal temperature. The mechanical properties of the composites and molecular weight of PLA matrix declined quickly at 60 °C, however, this process was quite slower at temperatures of 23 and 37.8 °C. Impact properties of the composites were hardly decreased, but the tensile and flexural properties suffered a drop though to various degrees with three degradation stages at 23 and 37.8 °C. The poor interface of composites and the degradation of PLA matrix were the main damage mechanism induced by hydrothermal aging. Furthermore, considering the hydrolysis of PLA matrix, the cleavage of PLA molecular chain in different aging time was quantitatively investigated for the first time to illustrate hydrolysis degree of PLA matrix at different aging time.

Keywords

Short plant fibers Injection molding Hydrothermal aging Thermal properties Aging mechanism 

Notes

Acknowledgements

This work was supported by the National Basic Research Program of China (973 Project) (Grant numbers 2010CB631105), the Natural Science Foundation of China (Grant numbers 51103108 and 11172212), State Key Laboratory of Molecular Engineering of Polymers and State Key Laboratory for Strength and Vibration of Mechanical Structures (SV2017-KF-16).

References

  1. 1.
    Vink ETH, Rábago KR, Glassner DA, Gruber PR (2003) Polym Degrad Stab 80:403–419CrossRefGoogle Scholar
  2. 2.
    Garlotta D (2001) J Polym Environ 9:63–84CrossRefGoogle Scholar
  3. 3.
    Baiardo M, Frisoni G, Scandola M, Rimelen M, Lips D, Ruffieux K, Wintermantel E (2003) J Appl Polym sci 90:1731–1738CrossRefGoogle Scholar
  4. 4.
    Pang X, Zhuang X, Tang Z, Chen X (2010) Biotechnol J 5:1125–1136CrossRefGoogle Scholar
  5. 5.
    Lunt J (1998) Polym Degrad Stab 59:145–152CrossRefGoogle Scholar
  6. 6.
    Amass W, Amass A, Tighe B (1998) Polym Int 47:89–144CrossRefGoogle Scholar
  7. 7.
    Brzeziński M, Biela T (2015) Polym Int 64:1667–1675CrossRefGoogle Scholar
  8. 8.
    Ganster J, Fink H-P, Pinnow M (2006) Compos Part A 37:1796–1804CrossRefGoogle Scholar
  9. 9.
    Beg MDH, Pickering KL (2008) Compos Part A 39:1091–1100CrossRefGoogle Scholar
  10. 10.
    Oever MJAVD, Beck B, Müssig J (2010) Compos Part A 41:1628–1635CrossRefGoogle Scholar
  11. 11.
    Thwe MM, Liao K (2003) Compos Sci Technol 63:375–387CrossRefGoogle Scholar
  12. 12.
    Joseph P, Rabello MS, Mattoso L, Joseph K, Thomas S (2002) Compos Sci Technol 62:1357–1372CrossRefGoogle Scholar
  13. 13.
    Hu R-H, Sun M-y, Lim J-K (2010) Mater Des 31:3167–3173CrossRefGoogle Scholar
  14. 14.
    Taib RM, Ramarad S, Ishak ZAM, Todo M (2010) Polym Compos 31:1213–1222Google Scholar
  15. 15.
    Yu T, Li Y (2014) Compos Part A 58:24–29CrossRefGoogle Scholar
  16. 16.
    Yu T, Jiang N, Li Y (2014) Compos Part A 64:139–146CrossRefGoogle Scholar
  17. 17.
    Gil-Castell O, Badia JD, Kittikorn T, Stromberg E, Martinez-Felipe A, Ek M, Earlsson S, Ribes-Greus A (2014) Polym Degrad Stab 108:212–222CrossRefGoogle Scholar
  18. 18.
    Woolnough CA, Yee LH, Charlton T, Charlton T, Foster LJR (2010) Polym Int 59:658–667Google Scholar
  19. 19.
    Boubakri A, Elleuch K, Guermazi N, Ayedi H (2009) Mater Des 30:3958–3965CrossRefGoogle Scholar
  20. 20.
    Hakkarainen M, Albertsson A-C, Karlsson S (1996) Polym Degrad Stab 52:283–291CrossRefGoogle Scholar
  21. 21.
    De Jong S, Arias ER, Rijkers D, Van Nostrum C, Kettenes-Van den Bosch J, Hennink W (2001) Polymer 42:2795–2802CrossRefGoogle Scholar
  22. 22.
    Andersson SR, Hakkarainen M, Inkinen S, Sodergard A, Albertsson AC (2010) Biomacromol 11:1067–1073CrossRefGoogle Scholar
  23. 23.
    Balakrishnan H, Hassan A, Imran M, Wahit MU (2011) J Polym Environ 19:863–875CrossRefGoogle Scholar
  24. 24.
    Gorrasi G, Pantani R (2013) Polym Degrad Stab 98:1006–1014CrossRefGoogle Scholar
  25. 25.
    Assarar M, Scida D, El Mahi A, Poilâne C, Ayad R (2011) Mater Des 32:788–795CrossRefGoogle Scholar
  26. 26.
    Alamri H, Low IM (2012) Polym Test 31:620–628CrossRefGoogle Scholar
  27. 27.
    Ndazi BS, Karlsson S (2011) Express Polym Lett 5:119–131CrossRefGoogle Scholar
  28. 28.
    Spiridon I, Leluk K, Resmerita AM, Darie RN (2015) Compos Part B Eng 69:342–349CrossRefGoogle Scholar
  29. 29.
    Sreekumar P, Joseph K, Unnikrishnan G, Thomas S (2007) Compos Sci Technol 67:453–461CrossRefGoogle Scholar
  30. 30.
    Almgren KM, Gamstedt EK, Berthold F, Lindström M (2010) Polym Compos 30:1809–1816CrossRefGoogle Scholar
  31. 31.
    Almgren KM, Akerholm M, Gamstedt EK, Salmen L, Lindstrom M (2008) J Reinf Plast Comp 27:1709–1721CrossRefGoogle Scholar
  32. 32.
    Regazzi A, Corn S, Ienny P, Bénézet J-C, Bergeret A (2016) Ind Crop Prod 84:358–365CrossRefGoogle Scholar
  33. 33.
    Iii WVS, Billington SL (2013) Compos Part A Appl S 50:81–92CrossRefGoogle Scholar
  34. 34.
    Li Y, Hu YP, Hu CJ, Yu YH (2008) Adv Mater Res Trans Tech Publ 33:553–558Google Scholar
  35. 35.
    Kunanopparat T, Menut P, Morel MH, Guilbert S (2008) Compos Part A Appl S 39:777–785CrossRefGoogle Scholar
  36. 36.
    Lee S-H, Ohkita T, Kitagawa K (2004) Holzforschung 58:529–536Google Scholar
  37. 37.
    Shen CH, Springer GS (1976) J Compos Mater 10:2–20CrossRefGoogle Scholar
  38. 38.
    Lim L-T, Auras R, Rubino M (2008) Prog Polym Sci 33:820–852CrossRefGoogle Scholar
  39. 39.
    Huang Y, Zhang C, Pan Y, Zhou Y, Jiang L, Dan Y (2013) Polym Degrad Stab 98:943–950CrossRefGoogle Scholar
  40. 40.
    Espert A, Vilaplana F, Karlsson S (2004) Compos Part A Appl S 35:1267–1276CrossRefGoogle Scholar
  41. 41.
    Iii WVS, Frank CW, Billington SL (2012) Polymer 53:2152–2161CrossRefGoogle Scholar
  42. 42.
    Zhang X, Espiritu M, Bilyk A, Kurniawan L (2008) Polym Degrad Stab 93:1964–1970CrossRefGoogle Scholar
  43. 43.
    Yussuf A, Massoumi I, Hassan A (2010) J Polym Environ 18:422–429CrossRefGoogle Scholar
  44. 44.
    Sombatsompop N, Chaochanchaikul K (2004) Polym Int 53:1210–1218CrossRefGoogle Scholar
  45. 45.
    Acioli-Moura R, Sun XS (2008) Polym Eng Sci 48:829–836CrossRefGoogle Scholar
  46. 46.
    Thuault A, Eve S, Blond D, Bréard J, Gomina M (2014) J Compos Mater 48:1699–1707CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Aerospace Engineering and Applied MechanicsTongji UniversityShanghaiPeople’s Republic of China
  2. 2.State Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghaiPeople’s Republic of China
  3. 3.State Key Laboratory for Strength and Vibration of Mechanical StructuresXi’an Jiaotong UniversityXi’anPeople’s Republic of China

Personalised recommendations