Journal of Polymers and the Environment

, Volume 26, Issue 8, pp 3149–3158 | Cite as

Poly(lactic acid)/Cellulose Composites Obtained from Modified Cotton Fibers by Successive Acid Hydrolysis

  • Rafael S. Araújo
  • Leonardo C. Ferreira
  • Claudinei C. Rezende
  • Maria F. V. MarquesEmail author
  • Maria Emanuela Errico
  • Roberto Avolio
  • Maurizio Avella
  • Gennaro Gentile
  • Pietro Russo
Original Paper


This work is focused on the hydrolysis of cotton fibers from waste textiles to obtain micro and nanofibers to be used as reinforcements in polymer composites. To promote their compatibility with polymeric matrix, hydrolyzed cotton fibers were surface modified with various silane compounds. Thus, these fibers were mixed with commercial poly(lactic acid) (PLA) at 5% w/w loading by melt compounding. Acid treatments caused a decrease of the crystallinity index whereas the thermal stability was significantly improved, especially for cellulose fibers hydrolyzed in two steps. Morphological analysis revealed a reduction of the fibers diameter and a decrease of their length as a consequence of the hydrolysis. NMR analysis confirmed the silanization of the fibers by reaction with the silane agent. Tensile tests revealed that silanization treatments were able to increase the composite Young’s modulus and the stress at break with respect to the neat matrix, indicating that silanization improved the polymer/fiber compatibility interfacial adhesion. The overall results demonstrated that applying suitable surface modification strategies, waste cotton textiles can be effectively recycled as fillers in polymer based composites.


Poly(lactic acid) Cellulose Cotton fibers Composites Hydrolyzed fibers 



The authors are grateful to CAPES (PNPD Program) for financial support, and Project FP7-People-2011- IRSES-295262 (VAIKUTUS Project) for L. C. Ferreira and Rafael S. Araújo Post-Docs fellowship.

Compliance with Ethical Standards

Conflict of interest

We wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.


  1. 1.
    Iranpour R et al (1999) Environmental engineering: energy value of replacing waste disposal with resource recovery. Science 285(5428):706–711CrossRefPubMedGoogle Scholar
  2. 2.
    Wang Y (2010) Fiber and textile waste utilization. Waste Biomass Valoriz 1(1):135–143CrossRefGoogle Scholar
  3. 3.
    Chen H-L et al (2006) Environmental analysis of textile products. Cloth Tex Res J 24(3):248–261CrossRefGoogle Scholar
  4. 4.
    Avella M et al (2009) Recycled multilayer cartons as cellulose source in HDPE-based composites: Compatibilization and structure-properties relationships. J Appl Polym Sci 114(5):2978–2985CrossRefGoogle Scholar
  5. 5.
    Di Lorenzo ML et al (2012) Isothermal and nonisothermal crystallization of HDPE composites containing multilayer carton scraps as filler. J Appl Polym Sci 125(5):3880–3887CrossRefGoogle Scholar
  6. 6.
    McCrum NG, Buckley CP, Bucknall CB (1997) Principles of polymer engineering, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  7. 7.
    Wang Y et al (2003) Recycling of carpet and textile fibers. In: Andrady AL (ed) Plastics and the environment. Wiley, New York, pp 697–725Google Scholar
  8. 8.
    Avella M et al (2008) Poly(lactic acid)-based biocomposites reinforced with kenaf fibers. J Appl Polym Sci 108(6):3542–3551CrossRefGoogle Scholar
  9. 9.
    Monteiro SN et al (2009) Natural-Fiber polymer-matrix composites: cheaper, tougher, and environmentally friendly. JOM 61(1):17–22CrossRefGoogle Scholar
  10. 10.
    Abdul HPSK et al (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87(2):963–979CrossRefGoogle Scholar
  11. 11.
    Avella M et al (2011) Biodegradable PVOH-based foams for packaging applications. J Cell Plast 47(3):271–282CrossRefGoogle Scholar
  12. 12.
    Avella M et al (2012) Polyvinyl alcohol biodegradable foams containing cellulose fibers. J Cell Plast 48(5):459–470CrossRefGoogle Scholar
  13. 13.
    Jonoobi M et at (2010) Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 70(12):1742–1747CrossRefGoogle Scholar
  14. 14.
    Helbert W et al (1996) Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Polym Compos 17(1): 604–611CrossRefGoogle Scholar
  15. 15.
    Gousse C et al (2004) Surface silylation of cellulose microfibrils: preparation and rheological properties. Polymer 45(5):1569–1575CrossRefGoogle Scholar
  16. 16.
    Abdelmouleh M et al (2005) Modification of cellulose fibers with functionalized silanes: Effect of the fiber treatment on the mechanical performances of cellulose–thermoset composites. J Appl Polym Sci 98(3):974–984CrossRefGoogle Scholar
  17. 17.
    Marques MFV, Oliveira PF (2015) Chemical treatment of natural malva fibers and preparation of green composites with poly(3-hydroxybutyrate). Chem Chem Technol 9(1):211–222Google Scholar
  18. 18.
    Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5(5):1671–1677CrossRefPubMedGoogle Scholar
  19. 19.
    Mamleev V et al (2007) Kinetic analysis of the thermal decomposition of cellulose: the main step of mass loss. J Anal Appl Pyrol 80(1):151–165CrossRefGoogle Scholar
  20. 20.
    Łojewska J et al (2005) Cellulose oxidative and hydrolytic degradation: in situ FTIR approach. Polym Degrad Stab 88(3):512–520CrossRefGoogle Scholar
  21. 21.
    Xiao B et al (2001) Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw. Polym Degrad Stab 74(2):307–319CrossRefGoogle Scholar
  22. 22.
    Yang H et al (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12–13):1781–1788CrossRefGoogle Scholar
  23. 23.
    Fahma F et al (2011) Effect of pre-acid-hydrolysis treatment on morphology and properties of cellulose nanowhiskers from coconut husk. Cellulose 18(2):443–450CrossRefGoogle Scholar
  24. 24.
    Baheti V et al (2014) Influence of noncellulosic contents on nano scale refinement of waste jute fibers for reinforcement in polylactic acid films. Fibers Polym 15(7):1500–1506CrossRefGoogle Scholar
  25. 25.
    Piekarska K et al (2014) Polylactide composites with waste cotton fibers: thermal and mechanical properties. Polym Compos 35(4):747–751CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Rafael S. Araújo
    • 1
    • 2
  • Leonardo C. Ferreira
    • 2
  • Claudinei C. Rezende
    • 1
  • Maria F. V. Marques
    • 2
    Email author
  • Maria Emanuela Errico
    • 3
  • Roberto Avolio
    • 3
  • Maurizio Avella
    • 3
  • Gennaro Gentile
    • 3
  • Pietro Russo
    • 3
  1. 1.POSMAT, CEFET-MGBelo HorizonteBrazil
  2. 2.IMA, UFRJRio de JaneiroBrazil
  3. 3.IPCB, CNRPozzuoliItaly

Personalised recommendations