Skip to main content
Log in

Poly(lactic acid)/Cellulose Composites Obtained from Modified Cotton Fibers by Successive Acid Hydrolysis

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

This work is focused on the hydrolysis of cotton fibers from waste textiles to obtain micro and nanofibers to be used as reinforcements in polymer composites. To promote their compatibility with polymeric matrix, hydrolyzed cotton fibers were surface modified with various silane compounds. Thus, these fibers were mixed with commercial poly(lactic acid) (PLA) at 5% w/w loading by melt compounding. Acid treatments caused a decrease of the crystallinity index whereas the thermal stability was significantly improved, especially for cellulose fibers hydrolyzed in two steps. Morphological analysis revealed a reduction of the fibers diameter and a decrease of their length as a consequence of the hydrolysis. NMR analysis confirmed the silanization of the fibers by reaction with the silane agent. Tensile tests revealed that silanization treatments were able to increase the composite Young’s modulus and the stress at break with respect to the neat matrix, indicating that silanization improved the polymer/fiber compatibility interfacial adhesion. The overall results demonstrated that applying suitable surface modification strategies, waste cotton textiles can be effectively recycled as fillers in polymer based composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Iranpour R et al (1999) Environmental engineering: energy value of replacing waste disposal with resource recovery. Science 285(5428):706–711

    Article  CAS  PubMed  Google Scholar 

  2. Wang Y (2010) Fiber and textile waste utilization. Waste Biomass Valoriz 1(1):135–143

    Article  Google Scholar 

  3. Chen H-L et al (2006) Environmental analysis of textile products. Cloth Tex Res J 24(3):248–261

    Article  Google Scholar 

  4. Avella M et al (2009) Recycled multilayer cartons as cellulose source in HDPE-based composites: Compatibilization and structure-properties relationships. J Appl Polym Sci 114(5):2978–2985

    Article  CAS  Google Scholar 

  5. Di Lorenzo ML et al (2012) Isothermal and nonisothermal crystallization of HDPE composites containing multilayer carton scraps as filler. J Appl Polym Sci 125(5):3880–3887

    Article  CAS  Google Scholar 

  6. McCrum NG, Buckley CP, Bucknall CB (1997) Principles of polymer engineering, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  7. Wang Y et al (2003) Recycling of carpet and textile fibers. In: Andrady AL (ed) Plastics and the environment. Wiley, New York, pp 697–725

    Google Scholar 

  8. Avella M et al (2008) Poly(lactic acid)-based biocomposites reinforced with kenaf fibers. J Appl Polym Sci 108(6):3542–3551

    Article  CAS  Google Scholar 

  9. Monteiro SN et al (2009) Natural-Fiber polymer-matrix composites: cheaper, tougher, and environmentally friendly. JOM 61(1):17–22

    Article  CAS  Google Scholar 

  10. Abdul HPSK et al (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87(2):963–979

    Article  CAS  Google Scholar 

  11. Avella M et al (2011) Biodegradable PVOH-based foams for packaging applications. J Cell Plast 47(3):271–282

    Article  CAS  Google Scholar 

  12. Avella M et al (2012) Polyvinyl alcohol biodegradable foams containing cellulose fibers. J Cell Plast 48(5):459–470

    Article  CAS  Google Scholar 

  13. Jonoobi M et at (2010) Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 70(12):1742–1747

    Article  CAS  Google Scholar 

  14. Helbert W et al (1996) Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Polym Compos 17(1): 604–611

    Article  CAS  Google Scholar 

  15. Gousse C et al (2004) Surface silylation of cellulose microfibrils: preparation and rheological properties. Polymer 45(5):1569–1575

    Article  CAS  Google Scholar 

  16. Abdelmouleh M et al (2005) Modification of cellulose fibers with functionalized silanes: Effect of the fiber treatment on the mechanical performances of cellulose–thermoset composites. J Appl Polym Sci 98(3):974–984

    Article  CAS  Google Scholar 

  17. Marques MFV, Oliveira PF (2015) Chemical treatment of natural malva fibers and preparation of green composites with poly(3-hydroxybutyrate). Chem Chem Technol 9(1):211–222

    Google Scholar 

  18. Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5(5):1671–1677

    Article  CAS  PubMed  Google Scholar 

  19. Mamleev V et al (2007) Kinetic analysis of the thermal decomposition of cellulose: the main step of mass loss. J Anal Appl Pyrol 80(1):151–165

    Article  CAS  Google Scholar 

  20. Łojewska J et al (2005) Cellulose oxidative and hydrolytic degradation: in situ FTIR approach. Polym Degrad Stab 88(3):512–520

    Article  CAS  Google Scholar 

  21. Xiao B et al (2001) Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw. Polym Degrad Stab 74(2):307–319

    Article  CAS  Google Scholar 

  22. Yang H et al (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12–13):1781–1788

    Article  CAS  Google Scholar 

  23. Fahma F et al (2011) Effect of pre-acid-hydrolysis treatment on morphology and properties of cellulose nanowhiskers from coconut husk. Cellulose 18(2):443–450

    Article  CAS  Google Scholar 

  24. Baheti V et al (2014) Influence of noncellulosic contents on nano scale refinement of waste jute fibers for reinforcement in polylactic acid films. Fibers Polym 15(7):1500–1506

    Article  CAS  Google Scholar 

  25. Piekarska K et al (2014) Polylactide composites with waste cotton fibers: thermal and mechanical properties. Polym Compos 35(4):747–751

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to CAPES (PNPD Program) for financial support, and Project FP7-People-2011- IRSES-295262 (VAIKUTUS Project) for L. C. Ferreira and Rafael S. Araújo Post-Docs fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria F. V. Marques.

Ethics declarations

Conflict of interest

We wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araújo, R.S., Ferreira, L.C., Rezende, C.C. et al. Poly(lactic acid)/Cellulose Composites Obtained from Modified Cotton Fibers by Successive Acid Hydrolysis. J Polym Environ 26, 3149–3158 (2018). https://doi.org/10.1007/s10924-018-1198-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-018-1198-3

Keywords

Navigation