Journal of Polymers and the Environment

, Volume 26, Issue 8, pp 3159–3167 | Cite as

Statistical Optimization of Polyhydroxybutyrate Production by Bacillus Pumilus H9 Using Cow Dung as a Cheap Carbon Source by Response Surface Methodology

  • Ningthoujam Chandani Devi
  • Pranab Behari MazumderEmail author
  • Amitabha Bhattacharjee
Original Paper


A gram positive bacterium (designated strain H9) found to be a potential polyhydroxybutyrate (biodegradable polymer) producer was isolated from the soil samples of a stress prone environment (municipal waste areas). This bacterium was identified as Bacillus pumilus H9 from its morphological, physiological and 16S rRNA gene sequence analysis. A four-factor central composite rotary design was employed to optimize the medium and to find out the interactive effects of four variables, viz. concentrations of cow dung, sucrose, peptone and pH on PHB production. Using response surface methodology, a second-order polynomial equation was obtained by multiple regression analysis and a yield of 2.47 g/L of PHB dry weight was achieved from the optimized medium at pH 7. Here, we report cow dung as a cheap carbon source for the production of PHB. Further, phbA, phbB and phbC genes were amplified by polymerase chain reaction which confirms the bacterium to be able to produce polyhydroxybutyrate.


Bacillus pumilus H9 Polyhydroxybutyrate Composite rotary design Response surface methodology Cow dung 



The authors are thankful to Department of Biotechnology, India for providing instruments to Microbial Molecular Biology Laboratory, Department of Biotechnology, Assam University, Silchar, Assam, India which were used in this work. The authors would also like to acknowledge Pintubala Kshetri, ICAR Research Complex for NEH Region, Manipur Centre, Lamphelpat, Imphal, India for her help in analysis of the Design Expert 6 software.


  1. 1.
    Cavalheiro JMBT, de Almeida MCMD, Grandfils C, da Fonseca MMR (2009) Process Biochem 44:509–515CrossRefGoogle Scholar
  2. 2.
    Kulpreecha S, Boonruangthavorn A, Meksiriporn B, Thongchul N (2009) J Biosci Bioeng 107(3):240–245CrossRefPubMedGoogle Scholar
  3. 3.
    Li R, Zhang H, Qi Q (2007) Bioresour Technol 98(12):2313–2320CrossRefPubMedGoogle Scholar
  4. 4.
    Gasser I, Muller H, Berg G (2009) FEMS Microbiol Ecol 70:142–150CrossRefPubMedGoogle Scholar
  5. 5.
    Kadouri D, Burdman S, Jurkevitch E, Okon Y (2002) Appl Environ Microbiol 68:2943–2949CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Choi J, Lee SY (1997) Bioprocess Eng 17:335–342CrossRefGoogle Scholar
  7. 7.
    Laleye SA, Tedela PO, Adesua B, Famurewa O (2007) Res J Microbiol 2(6):545–549CrossRefGoogle Scholar
  8. 8.
    Kiyasudeen SK, Ibrahim MHB, Ismail SA (2015) Am-Euras J Agric Environ Sci 15(8):1700–1709Google Scholar
  9. 9.
    Onwudike SU (2010) Asian J Agric Res 4(3):148–154CrossRefGoogle Scholar
  10. 10.
    Pandey A, Soccol CR, Nigam P, Brand D, Mohan R, Roussos S (2000) Biochem Eng J 6:153–162CrossRefPubMedGoogle Scholar
  11. 11.
    Pal A, Ramana KV, Bawa AS (2010) J Food Sci Technol 47:258–265CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Chen GQ, Wu Q (2005) Biomaterials 26:6565–6578CrossRefPubMedGoogle Scholar
  13. 13.
    Mokhtari-Hosseini ZB, Vasheghani-Farahani E, Heidarzadeh-Vazifekhoran A, Shojaosadati SA, Karimzadeh R, Darani KK (2009) Bioresour Technol 100:2436–2443CrossRefPubMedGoogle Scholar
  14. 14.
    Mu W, Chen C, Li X, Zhang T, Jiang B (2009) Bioresour Technol 100:1366–1370CrossRefPubMedGoogle Scholar
  15. 15.
    Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST (1994) Bergey’s manual of determinative bacteriology, 9th edn. Williamsons and Wilkins, BaltimoreGoogle Scholar
  16. 16.
    Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) J Bacteriol 173:697–703CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Rawte T, Mavinkurve S (2002) Indian J Exp Biol 40:924–929PubMedGoogle Scholar
  18. 18.
    Omidvar V, Akmar ASN, Marziah M, Maheran AA (2008) Plant Cell Rep 27:1451–1459CrossRefPubMedGoogle Scholar
  19. 19.
    Palleroni NJ, Kreig NR, Holt JG (1984) Bergey’s manual of systematic bacteriology. Williams & Wilkins, BaltimoreGoogle Scholar
  20. 20.
    Wang Y, Ruan L, Chua H, Yu PHF (2006) World J Microbiol Biotechnol 22(6):559–563CrossRefGoogle Scholar
  21. 21.
    Reddy SV, Thirumala M, Mahmood SK (2009) World J Microbiol Biotechnol 25:391–397CrossRefGoogle Scholar
  22. 22.
    Pandian SRK, Deepak V, Kalishwaralal K, Rameshkumar N, Jeyaraj M, Gurunathan S (2010) Bioresour Technol 101(2):705–711CrossRefPubMedGoogle Scholar
  23. 23.
    Sangkharak K, Prasertsan P (2012) J Gen Appl Microbiol 58:173–182CrossRefPubMedGoogle Scholar
  24. 24.
    Soam A, Singh AK, Singh R, Shahi SK (2012) Curr Discov 1(1):27–32Google Scholar
  25. 25.
    Khiyami MA, Al-Fadual SM, Bahklia AH (2011) J Med Plants Res 5(14):3312–3320Google Scholar
  26. 26.
    Masood F, Hasan F, Ahmed S, Hameed A (2012) Ann Microbiol 62(4):1377–1384CrossRefGoogle Scholar
  27. 27.
    Valappil SP, Peiris D, Langley GJ, Herniman JM, Boccaccini AR, Bucke C, Roy I (2007) J Biotechnol 127(3):475–487CrossRefPubMedGoogle Scholar
  28. 28.
    Lee SY, Middelberg APJ, Lee YK (1997) Biotechnol Lett 19(10):1033–1035CrossRefGoogle Scholar
  29. 29.
    Khardenavis AA, Kumar MS, Mudliar SN, Chakrabarti T (2007) Bioresour Technol 98(18):3579–3584CrossRefPubMedGoogle Scholar
  30. 30.
    Bhubalan K, Lee WH, Loo CY, Yamamoto T, Tsuge T, Doi Y, Sudesh K (2008) Polym Degrad Stab 93(1):17–23CrossRefGoogle Scholar
  31. 31.
    Kahar P, Tsuge T, Taguchi K, Doi Y (2004) Polym Degrad Stab 83(1):79–86CrossRefGoogle Scholar
  32. 32.
    Thakor N, Trivedi U, Patel KC (2005) Bioresour Technol 96(17):1843–1850CrossRefPubMedGoogle Scholar
  33. 33.
    Kumar T, Singh M, Purohit HJ, Kalia VC (2009) J Appl Microbiol 106:2017–2023CrossRefPubMedGoogle Scholar
  34. 34.
    Vijayaraghavan P, Vijayan A, Arun A, Jenisha JK, Vincent SGP (2012) SpringerPlus 1:76CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Rao JLUM, Satyanarayana T (2007) Bioresour Technol 98(2):345–352CrossRefGoogle Scholar
  36. 36.
    Xiong YH, Liu JZ, Song HY, Ji LN (2004) Biochem Eng J 21(1):27–32CrossRefGoogle Scholar
  37. 37.
    Deepak V, Kalishwaralal K, Ramkumarpandian S, Babu SV, Senthilkumar SR, Sangiliyandi G (2008) Bioresour Technol 99(17):8170–8174CrossRefPubMedGoogle Scholar
  38. 38.
    Haaland PD (1989) Statistical problem solving In: Haaland PD (ed) Experimental design in biotechnology. Marcel Dekker Inc, New York, pp 1–18Google Scholar
  39. 39.
    Berekaa MM (2012) Life Sci J 9(4):518–529Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ningthoujam Chandani Devi
    • 1
  • Pranab Behari Mazumder
    • 1
    Email author
  • Amitabha Bhattacharjee
    • 2
  1. 1.Department of BiotechnologyAssam UniversitySilcharIndia
  2. 2.Department of MicrobiologyAssam UniversitySilcharIndia

Personalised recommendations