Journal of Polymers and the Environment

, Volume 26, Issue 8, pp 3139–3148 | Cite as

Effects of Natural and Artificial Weathering on the Physical Properties of Recycled Poly(ethylene terephthalate)

  • Mathew PhilipEmail author
  • Farah Al-Azzawi
Original Paper


In accelerated weathering tests, specimens are exposed to higher radiation intensity, temperature and humidity than is likely under natural weathering in order to achieve rapid degradation of the polymer in a convenient short time. In the current work, a correlation between the two environments is attempted so that a prediction of lifetimes in the natural environment can be achieved. During aging, surface flaws are created due to the chain scission process. This is initiated by the absorption of ultra-violet light and directly affects visual appearance and impact strength. After natural weathering, the material shows only plastic deformation in an impact test. However, after artificial weathering to 5000 h of UV exposure, there is a decrease of 85% in impact strength. Colour change occurs at a high rate in the early stages of UV exposure. Beyond 2000 h of exposure, the colour change approaches a steady state and a correlation between the changes under natural and artificial weathering becomes apparent for a potential prediction of lifetimes. From the analysis including the specular component (SCI), taking surface roughening into account, 1 year under natural weathering was found to be equivalent to 25 days under accelerated weathering.


UV degradation Poly(ethylene terephthalate) Weathering Recycling 



The authors are grateful to Dr. Padmasari Kankanam Gamage for his technical support within the polymer laboratories at London Metropolitan University.


  1. 1.
    Mwanzaa BG, Mbohwa C (2017) Procedia Manuf 8:649–656CrossRefGoogle Scholar
  2. 2.
    Al-Salem SM, Lettieri P, Baeyens J (2009) Waste Manag 29:2625–2643CrossRefPubMedGoogle Scholar
  3. 3.
    Achilias DS, Antonakou E, Roupakias C, Megalokonomos P, Lappas A (2007) Global Nest J 10, 1:114–122Google Scholar
  4. 4.
    La Mantia FP, Correnti A (2003) Prog Rubber Plast Recycl Technol 19:135CrossRefGoogle Scholar
  5. 5.
    Sadat-Shojai M, Gholam-Reza B (2011) Polym Degrad Stab 96:404–415CrossRefGoogle Scholar
  6. 6.
    Zhang Z, Hirose T, Nishio S, Morioka Y, Azuma N, Ohkita AH, Okada M (1995) Ind Eng Chem Res 34:4514CrossRefGoogle Scholar
  7. 7.
    Pracella M, Chionna D, Ishak R, Galeski A (2004) Polym-Plast Technol Eng 43:1711CrossRefGoogle Scholar
  8. 8.
    Scheirs J (1998) Polymer recycling. Wiley, LondonGoogle Scholar
  9. 9.
    Awaja F, Pavel D (2005) Eur Polym J 41:1453CrossRefGoogle Scholar
  10. 10.
    Thiele U (2006) In: Proceedings of the 9th international polyester recycling forum, WashingtonGoogle Scholar
  11. 11.
    Mancini S, Zanin M (1997) Polym Recycl 3(98):239Google Scholar
  12. 12.
    Oromiehie A, Mamizadeh A (2004) Polym Intern 53:728CrossRefGoogle Scholar
  13. 13.
    Jain R, Lee L (2012) Fiber reinforced polymer (FRP) composites for infrastructure applications. Springer, BerlinCrossRefGoogle Scholar
  14. 14.
    Saravanan D (2007) Autex Res J 7:53Google Scholar
  15. 15.
    Davis L, Grace Y (2003) Geot Geom 21:111CrossRefGoogle Scholar
  16. 16.
    Gonzalez A, Desaja J (2005) J Appl Polym Sci 41:1961CrossRefGoogle Scholar
  17. 17.
    Davis A, Sim D (1983) Weathering of polymers. Applied Science Publishers Ltd, LondonGoogle Scholar
  18. 18.
    Capanescu C, Cincu C (2003) Adv Polym Technol 18:365CrossRefGoogle Scholar
  19. 19.
    Jakubowicz I (2001) Polym Test 20:545CrossRefGoogle Scholar
  20. 20.
    Feller RL (1994) Accelerated aging: photochemical and thermal aspects. Research in conservation. The Getty Conservation InstituteGoogle Scholar
  21. 21.
    Norman S, Edge M, Mohammadian M, Jones K (1994) Polym Degrad Stab 43:229CrossRefGoogle Scholar
  22. 22.
    Wang W, Taniguchi A, Fukuhara M, Okada T (1998) J Appl Polym Sci 67:705CrossRefGoogle Scholar
  23. 23.
    Wang W, Taniguchi A, Fukuhara M, Okada T (1990) J Appl Polym Sci 74:306CrossRefGoogle Scholar
  24. 24.
    Fechine G, Souto R (2002) J Mater Sci 37:4979CrossRefGoogle Scholar
  25. 25.
    Zhu Z, Kelley M (2005) Polymer 46:8883CrossRefGoogle Scholar
  26. 26.
    Fechine G, Rabello M, Souto R (2002) Polym Degrad Stab 75:153CrossRefGoogle Scholar
  27. 27.
    Fechine G, Christensen P, Egerton T, White J (2009) Polym Degrad Stab 94:234CrossRefGoogle Scholar
  28. 28.
    Hurley C, Leggett G (2009) ACS Appl Mater Interface 1:1688CrossRefGoogle Scholar
  29. 29.
    Fernando S, Christensen P, Egerton T, Eveson R (2009) Mater Sci Technol 25:549CrossRefGoogle Scholar
  30. 30.
    Krishnan S, Mitra S, Russell P, Benz G (1985) In: Proceedings of ACS symposium series 287. American Chemical Society, Washington, DCGoogle Scholar
  31. 31.
    Ilišković N, Bravar M (1986) Polym Degrad Stab 15:173CrossRefGoogle Scholar
  32. 32.
    Fechine G, Rabello M, Souto R (2004) Polymer 45:2303CrossRefGoogle Scholar
  33. 33.
    Russo P, Acierno D, Marinucci L, Greco A, Frigione M (2013) J Appl Polym Sci 127:2213CrossRefGoogle Scholar
  34. 34.
    Tuasikal M, Alothman O, Luqman M, Al-Zahrani S, Jawad M (2014) Int J Polym Anal Charact 19:189CrossRefGoogle Scholar
  35. 35.
    Wijdekop M, Arnold J, Evans M, John V, Alloyd A (2005) Mater Sci Technol 21:791CrossRefGoogle Scholar
  36. 36.
    Malanowski P (2009) Weathering of aromatic polyester coating. Ph.D Thesis. Eindhoven University of Technology, EindhovenGoogle Scholar
  37. 37.
    Donald D (1995) Polym-Plast Technol Eng 34:227CrossRefGoogle Scholar
  38. 38.
    Koo H, Chang G, Kim S, Hahm W, Park S (2013) Fib Polym 14:2083CrossRefGoogle Scholar
  39. 39.
    Badia J, Vilaplana F, Karlsson S, Ribes A (2009) Polym Test 28:169CrossRefGoogle Scholar
  40. 40.
    QUV accelerated weathering tester: operating manual (Q-Panel Lab Products, USA, 1997)Google Scholar
  41. 41.
    Precise colour communications: instruction manual (Minolta, Japan, 2007)Google Scholar
  42. 42.
    Attwood J, Philip M, Hulme A, Williams G, Shipton P (2006) Polym Degrad Stab 91(12):3407–3415CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Sir John Cass Faculty of Art, Architecture and DesignLondon Metropolitan UniversityLondonUK
  2. 2.BrightonUK

Personalised recommendations