Advertisement

Journal of Polymers and the Environment

, Volume 26, Issue 8, pp 3243–3249 | Cite as

Organically Modified Nanoclay and Aluminum Hydroxide Incorporated Bionanocomposites towards Enhancement of Physico-mechanical and Thermal Properties of Lignocellulosic Structural Reinforcement

  • Neetu Malik
  • Piyush Kumar
  • Subrata Bandhu Ghosh
  • Sharad Shrivastava
Original Paper

Abstract

A range of bio-nanocomposites were prepared by incorporation of organo modified montmorillonite nanoclay (OMMT) with or without use of aluminum hydroxide (Al(OH)3) within polylactic acid (PLA) solution. Furthermore, the solution was employed for modification of ligno-cellulosic (jute) fabric structural reinforcements. The successful incorporation of nanofillers within the host polymer, polylactic acid (PLA) was confirmed by Fourier-transform infrared spectroscopy (FT-IR). Water uptake and swelling behaviour studies revealed that the water uptake and swelling ratio of bio-composites reduced significantly as compared to pristine jute fabric, whereas upon incorporation of OMMT and Al(OH)3, the water barrier properties reduced even further in the developed bio-nanocomposites. The flexural strength of the bio-nanocomposites also showed improved mechanical and dimensional stability. Synergistic effects of OMMT and Al(OH)3 were observed in enhancing the aforementioned physico-mechanical properties. Scanning electron microscopy (SEM) studies revealed microstructural details of developed samples. Similarly, the thermo-gravimetric analysis and linear burning rate studies of Al(OH)treated bio-nanocomposite materials revealed enhanced thermal resistance and reduced flammability respectively compared to both pristine woven jute fabric and fabrics treated with PLA alone or those without Al(OH)3. From the above results it can safely be said that the bio-nanocomposite material can be a prospective candidate for development of flame retardant biopackaging.

Keywords

Nanocomposites Flame retardant Biopolymer Organo modified montmorillonite nano clay 

Notes

Acknowledgements

The authors gratefully acknowledge Indian Institute of Technology Roorkee (IITR), Birla Institute of Technology & Science, Pilani (BITS, Pilani) for their support for my research work.

References

  1. 1.
    Rout J, Misra M, Tripathy SS, Nayak SK (2001) Compos Sci Technol 61:1303–1310CrossRefGoogle Scholar
  2. 2.
    Tserki V, Matzinos P, Panayiotou C (2003) J Appl Polym Sci 88:1825–1835CrossRefGoogle Scholar
  3. 3.
    Misra S, Mohanty AK, Drzal LT (2003) Compos Sci Technol 63:1377–1385CrossRefGoogle Scholar
  4. 4.
    Chang J-H, An YU, Sur GS (2003) J Appl Polym Sci B Polym Phys 41:94–103CrossRefGoogle Scholar
  5. 5.
    Mehta G, Mohanty A, Misra M, Drzal L (2004) Green Chem 6:254–258CrossRefGoogle Scholar
  6. 6.
    Ochi M, Hori D, Watanabe Y, Takashima H, Harada M (2004) J Appl Polym Sci92(6):3721CrossRefGoogle Scholar
  7. 7.
    Yew GH, MohdYusof AM, MohdIshak ZA, Ishiaku US (2005) Polym Degrad Stab 90:488–500CrossRefGoogle Scholar
  8. 8.
    Kishi H, Fujita A, Miyazaki H, Matsuda S, Murakami A (2006) J Appl Polym Sci 102(3):2285CrossRefGoogle Scholar
  9. 9.
    Jin F-L, Han M, Park S-J (2006) Polym Int 55(11):1265CrossRefGoogle Scholar
  10. 10.
    Li X, Tabil L, Panigrahi S (2007) J Polym Environ 15:25–33CrossRefGoogle Scholar
  11. 11.
    Corrales F, Vilaseca F, Llop M, Gironès J, Méndez JA, Mutjè P (2007) J Hazard Mater 144:730–735CrossRefPubMedGoogle Scholar
  12. 12.
    Jin F-L, Park S-J (2008) Mater Sci Eng A 478(1–2):402CrossRefGoogle Scholar
  13. 13.
    Awal A, Ghosh SB, Sain M (2009) J Mater Sci 44:2876–2881CrossRefGoogle Scholar
  14. 14.
    Chow WS, Lok SK (2009) J Therm Anal Calorim 95(2):627–632CrossRefGoogle Scholar
  15. 15.
    Hoidy WH, Emad A, Jaffar Al-Mulla, Al-Janabi KW (2010) J Polym Environ 18:608–616CrossRefGoogle Scholar
  16. 16.
    Rasal RM, Janorkar AV, Hirt DE (2010) Prog Polym Sci 35:338–356CrossRefGoogle Scholar
  17. 17.
    Mitra BC (2014) Def Sci J 64(3):244–261CrossRefGoogle Scholar
  18. 18.
    Wang Y, Qi R, Xiong C, Huang M (2011) Iran Polym J 20:281–294Google Scholar
  19. 19.
    Sawpan MA, Pickering KL, Fernyhough A (2011) Compos A Appl Sci Manufac 42:1189–1196CrossRefGoogle Scholar
  20. 20.
    Khan JA, Khan MA, Islam R (2012) Fibers Polym 13(10):1300–1309CrossRefGoogle Scholar
  21. 21.
    ArifuzzamanKhan GM, Terano M, Gafur MA, Shamsul Alam M (2013) J King Saud Univ Eng Sci  https://doi.org/10.1016/j.jksues.2013.12.002 CrossRefGoogle Scholar
  22. 22.
    Goriparthi BK, Suman K, Nalluri MR (2012) Polym Compos 33:237–244CrossRefGoogle Scholar
  23. 23.
    Molinaro S, Romero MC, Boaro M, Sensidoni A, Lagazio C, Morris M, Kerry J (2013) J Food Eng 117:113–123CrossRefGoogle Scholar
  24. 24.
    Rakesh Kumar, Yakabu MK, Anandjiwala RD (2010) Composites A.  https://doi.org/10.1016/j.compositesa.2010.07.012 CrossRefGoogle Scholar
  25. 25.
    Dai D, Fan M (2013) RSC Adv 3:4659–4665CrossRefGoogle Scholar
  26. 26.
    Avella M, Bogoeva-Gaceva G, Bužarovska A, Errico ME, Gentile G, Grozdanov A (2008) J Appl Polym Sci 108:3542–3551CrossRefGoogle Scholar
  27. 27.
    Mohammad KH, Mohammad WD, Mahesh H, Shaik J (2011) Composites B 42:1701–1707CrossRefGoogle Scholar
  28. 28.
    Bhosale SH, Singh VVK, Rangasai MC, Bandyopadhyay SG, Ghosh SB (2014) Polym Compos.  https://doi.org/10.1002/pc.23192 CrossRefGoogle Scholar
  29. 29.
    Wang X, Hu Y, Song L, Yang H, Xing W, Lu H (2011) J Mater Chem 21:4222CrossRefGoogle Scholar
  30. 30.
    Jia W, Gong RH, Soutis C, Hogg PJ (2014) J Plast Rubber Compos 43:82–88CrossRefGoogle Scholar
  31. 31.
    Kanmani P, Rhim J-W (2014) J Food Hydrocolloids 35:644–652CrossRefGoogle Scholar
  32. 32.
    Rhim JW, Hing S-I, Ha C-K (2009) Food Sci Technol 42:612–617Google Scholar
  33. 33.
    Tao Yu J, Ren S, Li H, Yuan YL (2010) Composites A 41:499–505CrossRefGoogle Scholar
  34. 34.
    Valapa RB, Pugazhenthi G, Katiya V (2015) J Appl Polym Sci.  https://doi.org/10.1002/APP.41320 CrossRefGoogle Scholar
  35. 35.
    Mousa MH, Dong Yu, Davies IJ (2016) Int J Polym Mater Polym Biomater 65(5):225–254CrossRefGoogle Scholar
  36. 36.
    Mohammed L, Ansari MNM, Pua G, Jawaid M, Saiful Islam M (2015) J Polym Sci.  https://doi.org/10.1155/2015/243947 CrossRefGoogle Scholar
  37. 37.
    Awal A, Rana M, Sain M (2015) J Mech Mater 80:87–95CrossRefGoogle Scholar
  38. 38.
    Zhan J, Wang L, Hong NN, Hu WZ, Wang J, Song L, Hu Y (2014) Polym-Plast Technol Eng 53:387–394CrossRefGoogle Scholar
  39. 39.
    Bar M, Alagirusamy R, Das A (2015) Fibers Polym 16, 4:705–717CrossRefGoogle Scholar
  40. 40.
    Mngomezulu ME, John MJ, Jacobs V, Luyt AS (2014) Carbohyd Polym 111:149–182CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre for Materials Science and Technology, Mechanical Engineering DepartmentBirla Institute of Technology & SciencePilaniIndia
  2. 2.Department of Chemical EngineeringIndian Institute of TechnologyRoorkeeIndia
  3. 3.Mechanical Engineering DepartmentManipal University JaipurJaipurIndia

Personalised recommendations