Advertisement

Journal of Polymers and the Environment

, Volume 26, Issue 6, pp 2374–2391 | Cite as

Active and Intelligent Films Made from Starchy Sources/Blackberry Pulp

  • Tomy J. Gutiérrez
Original Paper

Abstract

Functional, active and intelligent films were prepared from biopolymeric matrices (plantain starch and pre-gelatinized plantain flour) with and without the addition of a natural filler (blackberry pulp) using the casting methodology. A thorough examination of the physicochemical, antioxidant and antimicrobial properties of the both the matrices used and the developed films was then carried out. The films developed from matrices incorporating the blackberry pulp were more amorphous, thicker, less sensitive to moisture, and with higher melting temperatures than the films made without this natural filler. The degree of substitution, average molecular weight and attenuated total reflectance Fourier transform infrared spectroscopy of the films made with blackberry pulp suggest that the starch chains were cross-linked. This is probably because the citric acid contained in the pulp functions as a cross-linking agent. Films with added blackberry pulp responded to changes in pH, i.e. were pH-sensitive, and also showed antimicrobial activity especially against Escherichia coli. In general, the addition of blackberry pulp improved the physicochemical and mechanical properties of the films developed due to cross-linking, as well as increasing their antioxidant activity.

Keywords

Crosslinking Films Functional polymers Microstructure Thermoplastics 

Notes

Acknowledgements

The author would like to thank Dr. Mirian Carmona-Rodríguez, Dr. Judith Sánchez Bruguera, Dr. María B. Raymúndez, Dr. Aura Cova, Prof. Alicia Mariela Rincón and Prof. Edgar del Carpio.

Compliance with Ethical Standards

Conflict of interest

The author declares no conflict of interest.

References

  1. 1.
    Losada PP, Cacho J, Iglesias MJ, Hernández-Agero TO, de la Puerta CN, Rodríguez RL (2011) Revista del Comité Científico de la AESAN, pp 89–105Google Scholar
  2. 2.
    Gontard N (2006) Tailor made food packaging concept. IUFoST, 13th World Congress of Food Science and Technology, Food is Life, September 2006, Nantes, France, pp 17–21Google Scholar
  3. 3.
    Yam KL (2012) Emerging food packaging technologies: principles and practice. Woodhead Publishing, Cambridge, pp 137–152CrossRefGoogle Scholar
  4. 4.
    Gontard N (2000) In: Paris N, Gontard (eds) Les Emballages Actifs. Tech & Doc Editions, Lavoisier, FranceGoogle Scholar
  5. 5.
    Vanderroost M, Ragaert P, Devlieghere F, De Meulenaer B (2014) Trends Food Sci Tech 39:47–62CrossRefGoogle Scholar
  6. 6.
    Dainelli D, Gontard N, Spyropoulos D,, Tobback P, Zondervan-van den Beuken E (2008) Trends Food Sci Tech 19:S103–S112CrossRefGoogle Scholar
  7. 7.
    Restuccia D, Spizzirri UG, Parisi OI, Cirillo G, Curcio M, Iemma F, Puoci F, Vinci G, Picci N (2010) Food Control 21:1425–1435CrossRefGoogle Scholar
  8. 8.
    Terci DBL, Rossi AV (2002) Quím Nova 25:684–688CrossRefGoogle Scholar
  9. 9.
    Chigurupati N, Saiki L, Gayser C, Dash AK (2002) Int J Pharm 241:293–299CrossRefPubMedGoogle Scholar
  10. 10.
    Mohd P, Khan A, Farooqui M (2011) J Adv Sci Res 2:20–27Google Scholar
  11. 11.
    Pereira VA Jr, de Arruda I.N.Q., Stefani R (2015) Food Hydrocolloid 43:180–188CrossRefGoogle Scholar
  12. 12.
    Gutiérrez TJ, Guzmán R, Medina C, Famá L (2016) Int J Biol Macromol 82:395–403CrossRefPubMedGoogle Scholar
  13. 13.
    Shahid M, Mohammad F (2013) J Clean Prod 53:310–331CrossRefGoogle Scholar
  14. 14.
    Sharma M, Li L, Celver J, Killian C, Kovoor A, Seeram NP (2009) J Agr Food Chem 58:3965–3969CrossRefGoogle Scholar
  15. 15.
    Adams LS, Zhang Y, Seeram NP, Heber D, Chen S (2010) Cancer Prev Res 3:108–113CrossRefGoogle Scholar
  16. 16.
    Barrajón-Catalán E, Fernández-Arroyo S, Saura D, Guillén E, Fernández-Gutiérrez A, Segura-Carretero A, Micol V (2010) Food Chem Toxicol 48:2273–2282CrossRefPubMedGoogle Scholar
  17. 17.
    Kasimsetty SG, Bialonska D, Reddy MK, Ma G, Khan SI, Ferreira D (2010) J Agr Food Chem 58:2180–2187CrossRefGoogle Scholar
  18. 18.
    Sánchez T, Dufour D, Moreno IX, Ceballos H (2010) J Agr Food Chem 58:5093–5099CrossRefGoogle Scholar
  19. 19.
    da Silva Pinto M, de Carvalho JE, Lajolo FM, Genovese MI, Shetty K (2010) J Med Food 13:1027–1035CrossRefGoogle Scholar
  20. 20.
    Dell’Agli M, Galli GV, Bulgari M, Basilico N, Romeo S, Bhattacharya D, Bhattacharya D, Taramelli D, Bosisio E (2010) Malaria J 9:208CrossRefGoogle Scholar
  21. 21.
    Kafkas E, Koşar M, Türemiş N, Başer K.H.C (2006) Food Chem 97:732–736CrossRefGoogle Scholar
  22. 22.
    Olsson E, Hedenqvist MS, Johansson C, Järnström L (2013) Carbohyd Polym 94:765–772CrossRefGoogle Scholar
  23. 23.
    Menzel C, Olsson E, Plivelic TS, Andersson R, Johansson C, Kuktaite R, Jarnstrom L (2013) K Koch Carbohyd Polym 96:270–276CrossRefGoogle Scholar
  24. 24.
    Majzoobi M, Beparva P (2014) Food Chem 147:312–317CrossRefPubMedGoogle Scholar
  25. 25.
    Wang S, Ren J, Li W, Sun R, Liu S (2014) Carbohyd Polym 103:94–99CrossRefGoogle Scholar
  26. 26.
    Altamirano-Fortoul R, Hernández-Muñoz P, Hernando I, Rosell CM (2015) J Food Eng 163:25–31CrossRefGoogle Scholar
  27. 27.
    Rutenberg MW, Solarek D (1984) Starch derivates: properties and uses. In: Whistler RL, Bemiller JN, Pachall EF (eds) Starch: chemistry and technology, 2nd edn, pp 312–388Google Scholar
  28. 28.
    Avella M, De Vlieger JJ, Errico ME, Fischer S, Vacca P, Volpe MG (2005) Food Chem 93:467–474CrossRefGoogle Scholar
  29. 29.
    Fabra MJ, Busolo MA, Lopez-Rubio A, Lagaron JM (2013) Trends Food Sci Tech 31:79–87CrossRefGoogle Scholar
  30. 30.
    Majeed K, Jawaid M, Hassan A, Bakar AA, Khalil HA, Salema AA, Inuwa I (2013) Mater Design 46:391–410CrossRefGoogle Scholar
  31. 31.
    Yoshida CMP, Maciel VBV, Mendonça MED, Franco TT (2014) LWT—Food Sci Technol 55:83–89CrossRefGoogle Scholar
  32. 32.
    Al-Hassan AA, Norziah MH (2012) Food Hydrocolloid 26:108–117CrossRefGoogle Scholar
  33. 33.
    Romero-Bastida CA, Bello-Péreza LA, García MA, Martino MN, Solorza-Feria J, Zaritzky NE (2005) Carbohyd Polym 60:235–244CrossRefGoogle Scholar
  34. 34.
    Zamudio-Flores PB, Bello-Pérez LA, Vargas-Torres A, Hernández-Uribe JP, Romero-Bastida CA (2007) Agrociencia 41:837–844Google Scholar
  35. 35.
    Sothornvit R, Pitak N (2007) Food Res Int 40:365–370CrossRefGoogle Scholar
  36. 36.
    Pitak N, Rakshit SK (2011) LWT-Food Sci Technol 44:2310–2315CrossRefGoogle Scholar
  37. 37.
    Pelissari FM, Andrade-Mahecha MM, do Sobral A, Menegalli FC (2013) Food Hydrocolloid 30:681–690CrossRefGoogle Scholar
  38. 38.
    García-Tejeda YV, López-González C, Pérez-Orozco JP, Rendón-Villalobos R, Jiménez-Pérez A, Flores-Huicochea E, Solorza-Feria J, Bastida CA (2013) LWT-Food Sci Technol 54:447–455CrossRefGoogle Scholar
  39. 39.
    Loesecke HV (1950) Bananas. Interscience, New York, p 189Google Scholar
  40. 40.
    Pérez E, Bahnassey Y, Breene W (1993) Starch-Stärke 45:211–214CrossRefGoogle Scholar
  41. 41.
    Pacheco E (2001) Acta Científica Venezolana 52:278–282Google Scholar
  42. 42.
    Rivero AC (2008) Universidad Nacional de Colombia. Bogotá, ColombiaGoogle Scholar
  43. 43.
    AACC (2003) Approved methods of the American Association of Cereal Chemists. Methods no. 44-15A, 30-10, 08-01, 46-13, 02-52, and 02-31. American Association of Cereal Chemists, St. PaulGoogle Scholar
  44. 44.
    Van Soest PU, Wine RH (1967) J Assoc Off Anal Chem 50:50–55Google Scholar
  45. 45.
    Pérez E, Gilbert O, Rolland-Sabaté A, Jiménez Y, Sánchez T, Giraldo A, Pontoire B, Guilois S, Lahon M-C, Reynes M, Dufour D (2010) J Agr Food Chem 59:263–273CrossRefGoogle Scholar
  46. 46.
    Pérez E, Rolland-Sabaté A, Dufour D, Guzmán R, Tapia M, Raymundez M, Ricci J, Guilois S, Pontoire B, Reynes M, Gilbert O (2013) Carbohyd Polym 98:650–658CrossRefGoogle Scholar
  47. 47.
    Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Method Enzymol 299:152–178CrossRefGoogle Scholar
  48. 48.
    Dewanto V, Wu X, Adom KK, Liu RH (2002) J Agr Food Chem 50:3010–3014CrossRefGoogle Scholar
  49. 49.
    Marier JR, Boulet M (1958) J Dairy Sci 41:1683–1692CrossRefGoogle Scholar
  50. 50.
    Hassimotto N.M.A., da Mota RV, Cordenunsi BR, Lajolo FM (2008) Food Sci Technol (Campinas) 28:702–708CrossRefGoogle Scholar
  51. 51.
    Gutiérrez TJ, Pérez E, Guzmán R, Tapia MS, Famá L (2014) J Polym Biopolym Phys Chem 2:1–5Google Scholar
  52. 52.
    Gutiérrez TJ, Tapia MS, Pérez E, Famá L (2015) Food Hydrocolloid 45:211–217CrossRefGoogle Scholar
  53. 53.
    Gutiérrez TJ, Tapia MS, Pérez E, Famá L (2015) Starch-Stärke 67:90–97CrossRefGoogle Scholar
  54. 54.
    Gontard N, Thibault R, Cuq B, Guilbert S (1996) J Agr Food Chem 44:1064–1069CrossRefGoogle Scholar
  55. 55.
    Klaushofer H, Berghofer E, Steyrer W (1978) Ernährung/Nutrition 2:51–55Google Scholar
  56. 56.
    Mei JQ, Zhou DN, Jin ZY, Xu XM, Chen HQ (2015) Food Chem 187:378–384CrossRefPubMedGoogle Scholar
  57. 57.
    Kramer EO (1938) J Ind Eng Chem 30:1200–1203CrossRefGoogle Scholar
  58. 58.
    Huggins ML (1942) J Am Chem Soc 64:2716–2718CrossRefGoogle Scholar
  59. 59.
    Gutiérrez TJ, .González G (2016) Food Bioprocess Technol 9:1812–1824CrossRefGoogle Scholar
  60. 60.
    Gutiérrez TJ, González G (2017) Food Biophys 12:11–22CrossRefGoogle Scholar
  61. 61.
    Gutiérrez TJ, Alvarez VA (2017) React Funct Polym 112:33–44CrossRefGoogle Scholar
  62. 62.
    ASTM D882. pp 882–888Google Scholar
  63. 63.
    Hermans PH, Weidinger A (1961) Macromol Chem Phys 44:24–36CrossRefGoogle Scholar
  64. 64.
    Chartoff RP (1981) In: Turi EA (ed) Thermal characterization of polymeric materials. vol 1, Academic Press, New York, pp. C3Google Scholar
  65. 65.
    Biliaredis CG, Lazaridou A, Arvanitoyannis I (1999) Carbohyd Polym 40:29–47CrossRefGoogle Scholar
  66. 66.
    ASTM D-1925 (1995) Standard Test Method for Yellowness Index of Plastics. American Society for Testing and Materials, PhiladelphiaGoogle Scholar
  67. 67.
    Rincón AM, Tapia MS, Padilla FC (2003) Revista Facultad de Farmacia Universidad Central de Venezuela 66:73–78Google Scholar
  68. 68.
    Miller NJ, Rice-Evans CA (1997) Free Radical Res 26:195–199CrossRefGoogle Scholar
  69. 69.
    Pranoto Y, Salokhe VM, Rakshit SK (2005) Food Res Int 38:267–272CrossRefGoogle Scholar
  70. 70.
    Ponce AG, Roura SI, Valle CE, Moreira MR (2008) Postharvest Biol Tec 49:294–300CrossRefGoogle Scholar
  71. 71.
    Jay JM (1996) Modern food microbiology, 5th edn. Chapman & Hall Publishing, New YorkCrossRefGoogle Scholar
  72. 72.
    Pelissari FM, Andrade-Mahecha MM, Sobral PJDA, Menegalli FC (2012) Starch-Stärke 64:382–391CrossRefGoogle Scholar
  73. 73.
    Saura-Calixto F, Goñi I (2006) Food Chem 94:442–447CrossRefGoogle Scholar
  74. 74.
    Kaume L, Howard LR, Devareddy L (2011) J Agr Food Chem 60:5716–5727CrossRefGoogle Scholar
  75. 75.
    Rasper V (1982) Theoretical aspects of amilographology. In: Shuey WC, Tipples KH (eds) The amylograph handbook, AACC, St. PaulGoogle Scholar
  76. 76.
    Hoseney (1986) Principles of cereal science and technology. Published by the American Association of Cereal Chemists, Inc., St. PaulGoogle Scholar
  77. 77.
    Zhou M, Robards K, Glennie-Holmes M, Helliwel S (1998) Cereal Chem 75:273–281CrossRefGoogle Scholar
  78. 78.
    Harper JM, Tribelhorn RE (1992) In: Kokini JL, Ho CT, Karwe MV (eds) Food extrusion science and technology, Marcel Dekker Inc., New York, pp 653–667Google Scholar
  79. 79.
    da Mota RV, Lajolo FM, Cordenunsi BR, Ciacco C (2000) Starch-Stärke 52:63–68CrossRefGoogle Scholar
  80. 80.
    Yu S, Ma Y, Menager L, Sun DW (2012) Food Bioprocess Tech 5:626–637CrossRefGoogle Scholar
  81. 81.
    de la Torre-Gutiérrez L, Chel-Guerrero LA, Betancur-Ancona D (2008) Food Chem 106:1138–1144CrossRefGoogle Scholar
  82. 82.
    Pérez-Sira E (1997) Starch-Stärke 49:45–49CrossRefGoogle Scholar
  83. 83.
    Osundahunsi OF (2009) J Food Agric Environ 7:182–186Google Scholar
  84. 84.
    Kapelko-Żeberska M, Buksa K, Szumny A, Zięba T, Gryszkin A (2016) LWT-Food Sci Technol 69:334–341CrossRefGoogle Scholar
  85. 85.
    Yoo SH, Jane JL (2002) Carbohyd Polym 49:307–314CrossRefGoogle Scholar
  86. 86.
    Mizoguchi K, Ueda M (2008) Polym J 40:645CrossRefGoogle Scholar
  87. 87.
    Gutiérrez TJ, Morales NJ, Tapia MS, Pérez E, Famá L (2015) Procedia Mater Sci 8:304–310CrossRefGoogle Scholar
  88. 88.
    Pérez E, Segovia X, Tapia MA, Schroeder M (2012) J Cell Plast 48:545–556CrossRefGoogle Scholar
  89. 89.
    Sívoli L, Pérez E, Rodríguez P, De Abrisqueta A, Raymúndez MB (2005) Acta Microscópica 14:5–9Google Scholar
  90. 90.
    González P, Medina C, Famá L, Goyanes S (2016) Carbohyd Polym 138:66–74CrossRefGoogle Scholar
  91. 91.
    Cyras VP, Tolosa Zenklusen MC, Vazquez A (2006) J Appl Polym Sci 101:4313–4319CrossRefGoogle Scholar
  92. 92.
    Gutiérrez TJ, Morales NJ, Pérez E, Tapia MS, Famá L (2015) Food Packag Shelf Life 3:1–8CrossRefGoogle Scholar
  93. 93.
    Gutiérrez TJ, Suniaga J, Monsalve A, García NL (2016) Food Hydrocolloid 54:234–244CrossRefGoogle Scholar
  94. 94.
    Xu YX, Kim KM, Hanna MA, Nag D (2005) Ind Crop Prod 21:185–192CrossRefGoogle Scholar
  95. 95.
    Mathew S, Brahmakumar M, Abraham TE (2006) Biopolymers 82:176–187CrossRefPubMedGoogle Scholar
  96. 96.
    Vicentini NM, Dupuy N, Leitzelman M, Cereda MP, Sobral PJA (2005) Spectrosc Lett 38:749–767CrossRefGoogle Scholar
  97. 97.
    Silva-Pereira MC, Teixeira JA, Pereira-Júnior VA, Stefani R (2015) LWT-Food Sci Technol 61:258–262CrossRefGoogle Scholar
  98. 98.
    Reis L.C.B., de Souza CO, da Silva J.B.A., Martins AC, Nunes IL, Druzian JI (2014) Food Bioprod Process 94:382–391CrossRefGoogle Scholar
  99. 99.
    Kizil R, Irudayaraj J, Seetharaman K (2002) J Agr Food Chem 50:3912–3918CrossRefGoogle Scholar
  100. 100.
    Famá L, Bittante A.M.B., Sobral PJ, Goyanes S, Gerschenson LN (2010) Mat Sci Eng C 30:853–859CrossRefGoogle Scholar
  101. 101.
    Rojas C (2008) Trabajo Especial de Grado, Universidad Central de Venezuela. Caracas, VenezuelaGoogle Scholar
  102. 102.
    García NL, Famá L, Dufresne A, Aranguren M, Goyanes S (2009) Food Res Int 42:976–982CrossRefGoogle Scholar
  103. 103.
    Miles MJ, Morris VJ, Ring SG (1985) Carbohyd Res 135:257–269CrossRefGoogle Scholar
  104. 104.
    Noel TR, Ring SG, Whittman MA (1992) Food Sci Technol Today 6:159Google Scholar
  105. 105.
    Lourdin D, Valle GD, Colonna P (1995) Carbohyd Polym 27:261–270CrossRefGoogle Scholar
  106. 106.
    Alves VD, Mali S, Beleia A, Grossmann MVE (2007) J Food Eng 78:941–946CrossRefGoogle Scholar
  107. 107.
    Mina JH, Valadez A, Herrera-Franco PJ, Toledano T (2009) Ingeniería y Competitividad 11:95–106Google Scholar
  108. 108.
    Muscat D, Adhikari B, Adhikari R, Chaudhary DS (2012) J Food Eng 109:189–201CrossRefGoogle Scholar
  109. 109.
    Saavedra N, Algecira N (2010) NOVA-Publicación científica en ciencias biomédicas 8:171–182. ISSN:1794–2470Google Scholar
  110. 110.
    Zullo R, Iannace S (2009) Carbohyd Polym 77:376–383CrossRefGoogle Scholar
  111. 111.
    Rindlav A, Hulleman S.H.D., Gatenholm P (1997) Carbohyd Polym 34:25–30CrossRefGoogle Scholar
  112. 112.
    Angellier H, Molina-Boisseau S, Dole P, Dufresne A (2006) Biomacromolecules 7:531–539CrossRefPubMedGoogle Scholar
  113. 113.
    Kristo E, Biliaderis CG (2007) Carbohyd Polym 68:146–158CrossRefGoogle Scholar
  114. 114.
    Tapia MS, Pérez E, Rodríguez P, Guzmán R, Ducamp-Collin MN, Tran T, Rolland-Sabaté A (2012) J Cell Plast 48:526–544CrossRefGoogle Scholar
  115. 115.
    Morales NJ, Candal R, Famá L, Goyanes S, Rubiolo GH (2015) Carbohyd Polym 127:291–299CrossRefGoogle Scholar
  116. 116.
    Zobel HF (1994) Starch granule structure. In: Alexander RJ, Zobel HF (eds) Developments in carbohydrate chemistry. The American Association of Cereal Chemists, St. Paul, pp 1–36Google Scholar
  117. 117.
    Farhat IA, Oguntona T, Neale RJ (1999) J Sci Food Agr 79:2105–2112CrossRefGoogle Scholar
  118. 118.
    Manzocco L, Nicoli MC, Labuza T (2003) Italian Food Technol XII:17–23Google Scholar
  119. 119.
    Zobel HF, French AD, Hinkle ME (1967) Biopolymers 5:837–845CrossRefGoogle Scholar
  120. 120.
    García MA, Martino MN, Zaritzky NE (2000) J Food Sci 65:941–944CrossRefGoogle Scholar
  121. 121.
    García MA, Martino MN, Zaritzky NE (2000) Starch-Stärke 52:118–124CrossRefGoogle Scholar
  122. 122.
    Mali S, Grossmann M.V.E., Garcia MA, Martino MN, Zaritzky NE (2002) Carbohyd Polym 50:379–386CrossRefGoogle Scholar
  123. 123.
    Mitrus M (2005) Int Agrophys 19:237–241Google Scholar
  124. 124.
    Bonilla J, Fortunati E, Atarés L, Chiralt A, Kenny JM (2014) Food Hydrocolloid 35:463–470CrossRefGoogle Scholar
  125. 125.
    Fakhouri FM, Fontes LCB, Gonçalves PVM, Milanez CR, Steel CJ, Collares-Queiroz FP (2007) Ciencia Tecnol Alime 27:369–375CrossRefGoogle Scholar
  126. 126.
    Wallach DFH (1996) US Patent No. 6495,368Google Scholar
  127. 127.
    Chang-Bravo L, López-Córdoba A, Martino M (2014) React Funct Polym 85:11–19CrossRefGoogle Scholar
  128. 128.
    García-Ruiz A, Bartolomé B, Cueva C, Rodríguez-Bencomo JJ, Requena T, Martín-Álvarez PJ, Moreno-Arribas MV (2012) 6ª Reunión Red Bal, Tarragona. II. Bacterias Lácticas y Alimentos, p. 27Google Scholar
  129. 129.
    Raybaudi-Massilia RM, Mosqueda-Melgar J, Martín-Belloso O (2008) Int J Food Microbiol 121:313–327CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Departamento Químico Analítico, Facultad de FarmaciaUniversidad Central de VenezuelaCaracasVenezuela
  2. 2.Instituto de Ciencia y Tecnología de Alimentos, Facultad de CienciasUniversidad Central de VenezuelaCaracasVenezuela

Personalised recommendations