Advertisement

Journal of Polymers and the Environment

, Volume 26, Issue 6, pp 2257–2267 | Cite as

Aliphatic–Aromatic Polyols by Thiol–Ene Reactions

  • Maha L. Shrestha
  • Mihail IonescuEmail author
Original Paper
  • 232 Downloads

Abstract

Aliphatic–aromatic polyols were synthesized by thiol–ene reactions (photochemical or thermal) using mercaptanized starting materials from bio-based compounds: limonene dimercaptan, thioglycerol, mercaptanized castor oil and isosorbide (3-mercaptopropyl) ether. Aromatic starting materials were phenols containing double bonds; ortho-allyl phenol (OAP, petrochemical-based) and eugenol (EUG, bio-based). The phenolic hydroxyl groups were blocked by alkoxylation with propylene oxide (PO) or glycidol (GLY) prior to use in thiol–ene reaction. The aromatic rings were attached to the mercaptans by reacting thiol groups with the double bonds of alkoxylated OAP (OAP–PO and OAP–GLY) and alkoxylated EUG (EUG–PO and EUG–GLY). These synthesized aliphatic–aromatic polyols were utilized for preparation of rigid polyurethane foams whose physical–mechanical properties were superior to those made only from bio-based aliphatic polyols. These rigid PU foams can be used in a wide range of applications; such as thermal insulation of freezers, buildings, pipes and storage tanks for food and chemical industries, as wood substitute, packaging materials and flotation materials.

Keywords

Limonene dimercaptan Thioglycerol Castor oil Isosorbide Polyurethane foams 

References

  1. 1.
    Liu F, Zhu J (2015) In: Liu Z, Kraus G (eds) Green materials from plant oils. Royal Society of Chemistry, London, pp 93–126Google Scholar
  2. 2.
    Smith PB, Payne GF (2011) In: Payne GF, Smith PB (eds) Renewable and sustainable polymers. ACS Publications, Washington, D.C., pp 1–10Google Scholar
  3. 3.
    Petrović ZS, Javni I, Ionescu M (2013) J Renew Mater 3:167CrossRefGoogle Scholar
  4. 4.
    Nohra B, Candy L, Blanco JF, Guerin C, Raoul Y, Mouloungui Z (2013) Macromolecules 46:3771CrossRefGoogle Scholar
  5. 5.
    Petrović ZS (2008) Polym Rev 48:109CrossRefGoogle Scholar
  6. 6.
    Petrović ZS, Yang L, Zlatanić A, Zhang W, Javni I (2007) J Appl Polym Sci 105:2717CrossRefGoogle Scholar
  7. 7.
    Ionescu M (2005) Chemistry and technology of polyols for polyurethanes. Rapra Technology Limited, ShawburyGoogle Scholar
  8. 8.
    Guo A, Cho Y, Petrović ZS (2000) J Polym Sci 38:3900CrossRefGoogle Scholar
  9. 9.
    Petrović ZS, Javni I, Guo A, Zhang W (2002) US Pat. 6,433,121Google Scholar
  10. 10.
    Petrović ZS, Guo A, Javni I (2003) US Pat. 6,573,354Google Scholar
  11. 11.
    Petrović ZS, Javni I, Guo A, Zhang W (2004) US Pat. 6,686,435Google Scholar
  12. 12.
    Kandanarachchi P, Guo A, Petrović ZS (2002) J Mol Catal A 184:65CrossRefGoogle Scholar
  13. 13.
    Kandanarachchi P, Guo A, Demydov D, Petrović ZS (2002) J Am Oil Chem Soc 79:1221CrossRefGoogle Scholar
  14. 14.
    Tran NB, Vialle J, Pham QT (1997) Polymer 38:2467CrossRefGoogle Scholar
  15. 15.
    Petrović ZS, Fajnik D (1984) J Appl Polym Sci 29:1031CrossRefGoogle Scholar
  16. 16.
    Mutlu H, Meier MR (2010) Eur J Lipid Sci Technol 112:10CrossRefGoogle Scholar
  17. 17.
    Bakhshi H, Yeganeh H, Mehdipour-Ataei S, Solouk A, Irani S (2013) Macromolecules 46:7777CrossRefGoogle Scholar
  18. 18.
    Kattimuttathu S, Kishanprasad VS (2005) Ind Eng Chem Res 44:4504CrossRefGoogle Scholar
  19. 19.
    Ionescu M, Wan X, Bilic N, Petrovic ZS (2012) J Polym Environ 20:647CrossRefGoogle Scholar
  20. 20.
    Ionescu M, Petrovic ZS (2013) Inform 24:393Google Scholar
  21. 21.
    Hoyle CE, Bowman CN (2010) Angew Chem Int Ed 49:1540CrossRefGoogle Scholar
  22. 22.
    Lowe AB (2010) Polym Chem 5:17CrossRefGoogle Scholar
  23. 23.
    Lowe B, Harvison MA (2010) Aust J Chem 63:1251CrossRefGoogle Scholar
  24. 24.
    Bantchev GB, Kenar JA, Biresaw G, Han MG (2009) J Agric Food Chem 57:1282CrossRefPubMedGoogle Scholar
  25. 25.
    Uygun M, Tasdelen MA, Y. Yagci (2010) Macromol Chem Phys 211:103CrossRefGoogle Scholar
  26. 26.
    Kade M, Burke DJ, Hawker CJ (2010) J Polym Sci A 48:743CrossRefGoogle Scholar
  27. 27.
    Cramer NB, Reddy SK, O’Brien AK, Bowman CN (2003) Macromolecules 36:7964CrossRefGoogle Scholar
  28. 28.
    Caillol S, Desroches M, Carlotti S, Auvergne R, Boutevin B (2013) Green Mater 1:16CrossRefGoogle Scholar
  29. 29.
    Caillol S, Boutevin B, Desroches M, Int. Pat. 2,012,001,315Google Scholar
  30. 30.
    Lligadas G, Ronda JC, Galia M, Cadiz V (2010) Polymers 2:440CrossRefGoogle Scholar
  31. 31.
    Desroches M, Caillol S, Auvergne R, Boutevin B (2012) Eur J Lipid Sci Technol 114:84CrossRefGoogle Scholar
  32. 32.
    Lligadas G, Ronda JC, Galia M, Cadiz V (2010) Biomacromolecules 11:2825CrossRefPubMedGoogle Scholar
  33. 33.
    Desroches M, Caillol S, Lapinte V, Auvergne R, Boutevin B (2011) Macromolecules 44:2489CrossRefGoogle Scholar
  34. 34.
    Ionescu M, Radojcić D, Wan X, Petrović ZS, Upshaw TA (2015) Eur Polym J 67:439CrossRefGoogle Scholar
  35. 35.
    Gupta RK, Ionescu M, Radojcić D, Wan X, Petrović ZS (2014) J Polym Environ 22:304CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Chemistry, Kansas Polymer Research CenterPittsburg State UniversityPittsburgUSA

Personalised recommendations