Journal of Polymers and the Environment

, Volume 26, Issue 5, pp 2142–2152 | Cite as

Effects of Aging and Different Mechanical Recycling Processes on the Structure and Properties of Poly(lactic acid)-clay Nanocomposites

  • F. R. Beltrán
  • E. Ortega
  • A. M. Solvoll
  • V. Lorenzo
  • M. U. de la Orden
  • J. Martínez Urreaga
Original Paper
  • 99 Downloads

Abstract

The growing use of poly(lactic acid) (PLA) and PLA-based nanocomposites in packaging has raised the interest of studying the mechanical recycling of the wastes and the properties of the recycled materials. The main objective of this work was to study the effect of two different mechanical recycling processes on the structure and properties of a PLA-montmorillonite nanocomposite. The two recycling processes included accelerated thermal and photochemical aging steps to simulate the degradation experienced by post-consumer plastics during their service life. One of them also included a demanding washing process prior to the reprocessing. A decrease in the molecular weight of PLA was observed in the recycled materials, especially in those subjected to the washing step, which explained the small decrease in microhardness and the increased water uptake at long immersion times. Water absorption at short immersion times was similar in virgin and recycled materials and was accurately described using a Fickian model. The recycled materials showed increased thermal, optical and gas barrier properties due to the improved clay dispersion that was observed by XRD and TEM analysis. The results suggest that recycled PLA-clay nanocomposites can be used in demanding applications.

Keywords

Mechanical recycling Poly(lactic acid) Nanocomposites Structure Properties 

Notes

Acknowledgements

The authors would like to thank the Centro Nacional de Microscopía Electrónica and the CAI Difracción de Rayos X of the Universidad Complutense de Madrid (Spain), for the collaboration in the TEM and XRD measurements, respectively. The authors also would like to acknowledge the funding from MINECO-Spain (project MAT2013-47972-C2-2-P), Universidad Politécnica de Madrid (project UPM RP 160543006) and Ecoembes (project DEHIPLA-R).

References

  1. 1.
    Beltrán FR, Lorenzo V, Acosta J, de la Orden MU, Martínez Urreaga J (in press) J Environ ManagGoogle Scholar
  2. 2.
    Badia JD, Santonja-Blasco L, Martínez-Felipe A, Ribes-Greus A (2012) Polym Degrad Stab 97:1881CrossRefGoogle Scholar
  3. 3.
    Auras R, Lim L, Selke S. E. M., Tsuji H (2010) Poly(lactic acid): synthesis, structures, properties, processing, and applications. Wiley, New JerseyCrossRefGoogle Scholar
  4. 4.
    Raquez J, Habibi Y, Murariu M, Dubois P (2013) Prog Polym Sci 38:1504CrossRefGoogle Scholar
  5. 5.
    Rhim J, Park H, Ha C (2013) Prog Polym Sci 38:1629CrossRefGoogle Scholar
  6. 6.
    Souza PMS, Morales AR, Marin-Morales M, Mei LHI (2013) J Polym Environ 21:738CrossRefGoogle Scholar
  7. 7.
    Aeschelmann F, Carus M (2015) Ind Biotechnol 11:154CrossRefGoogle Scholar
  8. 8.
    Reddy MM, Vivekanandhan S, Misra M, Bhatia SK, Mohanty AK (2013) Prog Polym Sci 38:1653CrossRefGoogle Scholar
  9. 9.
    Leejarkpai T, Mungcharoen T, Suwanmanee U (2016) J Clean Prod 125:95CrossRefGoogle Scholar
  10. 10.
    Mülhaupt R (2013) Macromol Chem Phys 214:159CrossRefGoogle Scholar
  11. 11.
    Piemonte V (2011) J Polym Environ 19:988CrossRefGoogle Scholar
  12. 12.
    Cosate de Andrade MF, Souza PMS, Cavalett O, Morales AR (2016) J Polym Environ 24:372CrossRefGoogle Scholar
  13. 13.
    Rossi V, Cleeve-Edwards N, Lundquist L, Schenker U, Dubois C, Humbert S, Jolliet O (2015) J Clean Prod 86:132CrossRefGoogle Scholar
  14. 14.
    Niaounakis M (2013) Biopolymers reuse, recycling, and disposal. William Andrew Publishing, OxfordGoogle Scholar
  15. 15.
    Badia JD, Ribes-Greus A (2016) Eur Polym J 84:22CrossRefGoogle Scholar
  16. 16.
    Badia JD, Gil-Castell O, Ribes-Greus A (2017) Polym Degrad Stab 137:35CrossRefGoogle Scholar
  17. 17.
    Scaffaro R, Morreale M, Mirabella F, La Mantia FP (2011) Macromol Mater Eng 296:141CrossRefGoogle Scholar
  18. 18.
    Badia JD, Strömberg E, Karlsson S, Ribes-Greus A (2012) Polym Degrad Stab 97:670CrossRefGoogle Scholar
  19. 19.
    Żenkiewicz M, Richert J, Rytlewski P, Moraczewski K, Stepczyńska M, Karasiewicz T (2009) Polym Test 28:412CrossRefGoogle Scholar
  20. 20.
    Nascimento L, Gamez-Perez J, Santana OO, Velasco JI, Maspoch ML, Franco-Urquiza E (2010) J Polym Environ 18:654CrossRefGoogle Scholar
  21. 21.
    Beltrán FR, Lorenzo V, de la Orden MU, Martínez-Urreaga J (2016) Polym Degrad Stab 133:339CrossRefGoogle Scholar
  22. 22.
    Kozlowski MA, Macyszyn J (2013) In: Silvestre C, Cimmino S (eds) Recycling of nanocomposites in: polymer nanomaterials for food packaging. CRC Press, Florida, pp 313–336Google Scholar
  23. 23.
    Scaffaro R, Sutera F, Mistretta MC, Botta L, La Mantia FP (2017) Express Polym Lett 11:555CrossRefGoogle Scholar
  24. 24.
    Chariyachotilert C, Joshi S, Selke SEM, Auras R (2012) J Plast Film Sheeting 28:314CrossRefGoogle Scholar
  25. 25.
    Kraemer EO (1938) Ind Eng Chem 30:1200CrossRefGoogle Scholar
  26. 26.
    Arranz-Andrés J, Lorenzo V, de la Orden MU, Pérez E, Cerrada ML (2011) J Membr Sci 377:141CrossRefGoogle Scholar
  27. 27.
    Rutherford SW, Do DD (1997) Adsorption 3:283CrossRefGoogle Scholar
  28. 28.
    Le Marec PE, Ferry L, Quantin J, Bénézet J, Bonfils F, Guilbert S, Bergeret A (2014) Polym Degrad Stab 110:353CrossRefGoogle Scholar
  29. 29.
    Pluta M, Jeszka JK, Boiteux G (2007) Eur Polym J 43:2819CrossRefGoogle Scholar
  30. 30.
    Di Lorenzo ML (2006) J Appl Polym Sci 100:3145CrossRefGoogle Scholar
  31. 31.
    Yasuniwa M, Tsubakihara S, Sugimoto Y, Nakafuku C (2004) J Polym Sci B Polym Phys 42:25CrossRefGoogle Scholar
  32. 32.
    Cele HM, Ojijo V, Chen H, Kumar S, Land K, Joubert T, de Villiers MFR, Ray SS (2014) Polym Test 36:24CrossRefGoogle Scholar
  33. 33.
    Pillin I, Montrelay N, Bourmaud A, Grohens Y (2008) Polym Degrad Stab 93:321CrossRefGoogle Scholar
  34. 34.
    Lorenzo V, Pereña JM (1999) Curr Trends Polym Sci 4:65–76Google Scholar
  35. 35.
    Cohen MH, Turnbull D (1959) J Chem Phys 31:1164CrossRefGoogle Scholar
  36. 36.
    Balart JF, Montanes N, Fombuena V, Boronat T, Sánchez-Nacher L (2017) J Polym Environ 1Google Scholar
  37. 37.
    Davis EM, Theryo G, Hillmyer MA, Cairncross RA, Elabd YA (2011) ACS Appl Mater Interfaces 3:3997CrossRefGoogle Scholar
  38. 38.
    Deroiné M, Le Duigou A, Corre Y, Le Gac P, Davies P, César G, Bruzaud S (2014) Polym Degrad Stab 108:319CrossRefGoogle Scholar
  39. 39.
    Crank J (1975) The mathematics of diffusion. Clarendon Press, OxfordGoogle Scholar
  40. 40.
    Gupta KM, Pawar SJ (2005) Mater Sci Eng 412:78CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • F. R. Beltrán
    • 1
    • 2
  • E. Ortega
    • 1
  • A. M. Solvoll
    • 1
  • V. Lorenzo
    • 2
  • M. U. de la Orden
    • 2
    • 3
  • J. Martínez Urreaga
    • 1
    • 2
  1. 1.Departamento de Ingeniería Química Industrial y del Medio Ambiente, E.T.S.I. IndustrialesUniversidad Politécnica de MadridMadridSpain
  2. 2.Grupo de Investigación “Polímeros: Caracterización y Aplicaciones (POLCA)”, E.T.S.I. IndustrialesUniversidad Politécnica de MadridMadridSpain
  3. 3.Departamento de Química Orgánica I, Facultad de Óptica y OptometríaUniversidad Complutense de MadridMadridSpain

Personalised recommendations