Adsorption Studies of PVA Based Thermosensitive Polymers in Heavy Metal Removal
- 119 Downloads
Abstract
Thermosensitive copolymers were synthesized by grafting of N-isopropyl acrylamide (NIPAM) monomer onto crosslinked poly(vinyl alcohol) (PVA) and characterized by FTIR, XRD, elemental and SEM-EDS analysis. Also, the swelling capacities, water release values and cloud points of the copolymers were determined. The removal of Cu(II), Ni(II) and Cd(II) ions was studied by using of the copolymers as solid phase extractor. Dodecyltrimethylammonium chloride (DTAC) was the extractant to complex with ions in the process. The copolymer adsorbs the metal–extractant complexes above its lower critical solution temperature (LCST) by hydrophobic interaction. Increasing the time and initial metal ion concentration caused an increase in the adsorption capacities, and the copolymer displayed S-type adsorption in Giles’s classification. The experimental data followed pseudo-second-order model, and the dominated adsorption mechanism was external mass diffusion. In addition, adsorption/desorption cycles presented the usability of the synthesized copolymer as sorbent for environmentally friendly processes.
Keywords
Poly(vinyl alcohol) N-Isopropyl acrylamide Graft polymerization Metal ion adsorption Adsorption kineticsNotes
Acknowledgements
This work was supported by the Research Fund of Istanbul University, Project No: 21965.
References
- 1.Chantawong V, Harvey NW, Bashkin VN (2003) Water Air Soil Pollut 148:111CrossRefGoogle Scholar
- 2.Arias F, Sen TK (2009) Colloid Surf A 348:100CrossRefGoogle Scholar
- 3.Bhattacharyya KG, Gupta SS (2008) Adv Colloid Interfac 140:114CrossRefGoogle Scholar
- 4.Yao ZY, Qi JH, Wang LH (2010) J Hazard Mater 174:137CrossRefGoogle Scholar
- 5.Wan Ngah WS, Teong LC, Hanafiah MAKM (2011) Carbohyd Polym 83:1446CrossRefGoogle Scholar
- 6.Kara A, Uzun L, Besirli N, Denizli A (2004) J Hazard Mater 106:93CrossRefGoogle Scholar
- 7.Duran A, Soylak M, Tuncel SA (2008) J Hazard Mater 155:114CrossRefGoogle Scholar
- 8.Ju XJ, Zhang SB, Zhou MY, Xie R, Yang L, Chu LY (2009) J Hazard Mater 167:114CrossRefGoogle Scholar
- 9.Tokuyama H, Iwama T (2009) Sep Purif Technol 68:417CrossRefGoogle Scholar
- 10.Tokuyama H, Hisaeda J, Nii S, Sakohara S (2010) Sep Purif Technol 71:83CrossRefGoogle Scholar
- 11.Tokuyama H, Yanagawa K, Sakohara S (2006) Sep Purif Technol 50:8CrossRefGoogle Scholar
- 12.Tokuyama H, Iwama T (2007) Langmuir 23:13104CrossRefGoogle Scholar
- 13.Kanazawa R, Yoshida T, Gotoh T, Sakohara S (2004) J Chem Eng Jpn 37:59CrossRefGoogle Scholar
- 14.Tokuyama H, Kanehara A (2007) React Funct Polym 67:136CrossRefGoogle Scholar
- 15.Kanazawa R, Mori K, Tokuyama H, Sakohara S (2004) J Chem Eng Jpn 37:804CrossRefGoogle Scholar
- 16.Tokuyama H, Kanazawa R, Sakohara S (2005) Sep Purif Technol 44:152CrossRefGoogle Scholar
- 17.Tokuyama H, Fujioka M, Sakohara S (2005) J Chem Eng Jpn 38:633CrossRefGoogle Scholar
- 18.Tokuyama H, Naohara S, Fujioka M, Sakohara S (2008) React Funct Polym 68:182CrossRefGoogle Scholar
- 19.Kasgoz H, Ozbas Z, Esen E, Sahin CP, Gurdag G (2013) J Appl Polym Sci 130:4440Google Scholar
- 20.Zhang Q, Tang Y, Zha L, Ma J, Liang B (2008) Eur Polym J 44:1358CrossRefGoogle Scholar
- 21.Emik S, Gurdag G (2006) J Appl Polym Sci 100:428CrossRefGoogle Scholar
- 22.Mansur HS, Sadahira CM, Souza AN, Mansur AAP (2008) Mater Sci Eng C 28:539CrossRefGoogle Scholar
- 23.Dos Reis EF, Campos FS, Lage AP, Leite RC, Heneine LG, Vasconcelos WL, Lobato ZIP, Mansur HS (2006) Mat Res 9:185CrossRefGoogle Scholar
- 24.Uslu I, Başer B, Yaylı A, Aksu ML (2007) e-Polymers 145:1Google Scholar
- 25.Wang L, Li J, Lin Y, Chen C (2009) Chem Eng J 146:71CrossRefGoogle Scholar
- 26.Gupta KC, Khandekar K (2003) Biomacromolecules 4:758CrossRefGoogle Scholar
- 27.Carrillo F, Defays B, Colom X (2008) Eur Polym J 44:4020CrossRefGoogle Scholar
- 28.Singha AS, Shama A, Thakur VK (2008) Bull Mater Sci 31:7CrossRefGoogle Scholar
- 29.Yang J, Hu DD, Zhang H (2012) React Funct Polym 72:438CrossRefGoogle Scholar
- 30.Nonaka T, Yoda T, Kurihara S (1998) J Polym Sci A 36:3097CrossRefGoogle Scholar
- 31.Lutz J, Akdemir Ö, Hoth A (2006) J Am Chem Soc 128:13046CrossRefGoogle Scholar
- 32.Zhang XZ, Yang YY, Wang FJ, Chung TS (2002) Langmuir 18:2013Google Scholar
- 33.Kaneko Y, Sakai K, Kikuchi A, Yoshida R, Sakurai Y, Okano T (1995) Macromolecules 28:7717CrossRefGoogle Scholar
- 34.Giles CH, Smith D (1974) J Colloid Interf Sci 47:) 755Google Scholar
- 35.Seki Y, Seyhan S, Yurdakoc M (2006) J Hazard Mater 138:60CrossRefGoogle Scholar
- 36.Geffroy C, Cohen Stuart MA, Wong K, Cabane B, Bergeron V (2000) Langmuir 16:6422CrossRefGoogle Scholar
- 37.Graillot A, Djenadi S, Faur C, Bouyer D, Monge S, Robin JJ (2013) Water Sci Technol 67:1181CrossRefGoogle Scholar
- 38.Takeshita K, Ishida K, Nakano Y, Matsumura T (2007) Chem Lett 36:1032CrossRefGoogle Scholar
- 39.Lagergren S, Sven K Vetenskapsakad Handlingar 24(1898):1Google Scholar
- 40.Ho YS, McKay G (1999) Process Biochem 34:451CrossRefGoogle Scholar
- 41.Weber WJ Jr, Morris JC (1963) J Sanitary Eng Div ASCE 89:31Google Scholar
- 42.Bilgili MS (2006) J Hazard Mater B 137:157CrossRefGoogle Scholar
- 43.Emik S (2014) React Funct Polym 75:63CrossRefGoogle Scholar
- 44.Wang L, Zhang J, Zhao R, Li Y, Li C, Zhang C (2010) Bioresource Technol 101:5808CrossRefGoogle Scholar
- 45.Wu FC, Tseng RL, Juang RS (2005) J Colloid Interf Sci 283:49CrossRefGoogle Scholar
- 46.Hu XJ, Wang JS, Liu YG, Li X, Zeng GM, Bao ZL, Zeng XX, Chen AW, Long F (2011) J Hazard Mater 185:306CrossRefGoogle Scholar
- 47.Chen H, Wang A (2007) J Colloid Interf Sci 307:309CrossRefGoogle Scholar
- 48.Boyd GE, Adamson AW, Myers LS (1947) J Am Chem Soc 69:2836CrossRefGoogle Scholar
- 49.Reichenberg D (1953) J Am Chem Soc 75:589CrossRefGoogle Scholar