Journal of Polymers and the Environment

, Volume 26, Issue 5, pp 1986–1997 | Cite as

Synthesis of N-Guanidinium-Chitosan/Silica Hybrid Composites: Efficient Adsorbents for Anionic Pollutants

  • Ahmed SalamaEmail author
  • Peter Hesemann
Original Paper


A new chitosan derivative, N-guanidinium chitosan acetate, has been synthesized by direct guanylation of chitosan by cyanamide in presence of scandium(III) triflate under mild acidic condition. Starting from this material, N-guanidinium chitosan/silica microhybrids were prepared via a sol gel method using 3-glycidoxypropyl trimethoxysilane as silica precursor. Both N-guanidinium chitosan and the N-guanidinium chitosan/silica hybrid were characterized by a range of analytical techniques such as 29Si/13C solid state NMR, FT-IR, scanning electron microscopy, thermogravimetry and elemental analysis. The characterization of the chitosan/silica hybrid indicated that this material is a highly hydrophilic nanocomposite material containing an organic core and a highly condensed silica shell. The N-guanidinium chitosan/silica microhybrids display excellent adsorption properties for anionic dyes such as methyl orange (MO) with very high capacities up to 917 mg/g. The fixation of MO as anionic dye was investigated in detail as a function of contact time, pH and the MO concentration. The adsorption kinetics of MO on N-guanidinium chitosan/silica microhybrids was more accurately described by pseudo second-order model. Langmuir isotherm model exhibited a better fit with adsorption data than Freundlich isotherm model. This work opens new possibilities for using N-guanidinium chitosan as a reusable adsorbent for water purification.

Graphical Abstract


Chitosan Hybrid materials Hybrid silica Guanidinium Adsorption Water treatment 



We thank the Université de Montpellier and the Egyptian Government for financial support. The authors are indebted to Christine Biolley for solid-state NMR measurements.


  1. 1.
    Zhang J, Zhou Q, Ou L (2012) Kinetic, isotherm, and thermodynamic studies of the adsorption of methyl orange from aqueous solution by chitosan/alumina composite. J Chem Eng Data 57:412–419. doi: 10.1021/je2009945 CrossRefGoogle Scholar
  2. 2.
    Niu P, Hao J (2011) Fabrication of titanium dioxide and tungstophosphate nanocomposite films and their photocatalytic degradation for methyl orange. Langmuir 27:13590–13597. doi: 10.1021/la203178s CrossRefGoogle Scholar
  3. 3.
    Ma J, Yu F, Zhou L et al (2012) Enhanced adsorptive removal of methyl orange and methylene blue from aqueous solution by alkali-activated multiwalled carbon nanotubes. ACS Appl Mater Interfaces 4:5749–5760. doi: 10.1021/am301053m CrossRefGoogle Scholar
  4. 4.
    Salama A, Shukry N, El-Sakhawy M (2015) Carboxymethyl cellulose-g-poly(2-(dimethylamino) ethyl methacrylate) hydrogel as adsorbent for dye removal. Int J Biol Macromol 73:72–75. doi: 10.1016/j.ijbiomac.2014.11.002 CrossRefGoogle Scholar
  5. 5.
    Budnyak TM, Pylypchuk IV, Tertykh V a et al (2015) Synthesis and adsorption properties of chitosan-silica nanocomposite prepared by sol–gel method. Nanoscale Res Lett 10:87. doi: 10.1186/s11671-014-0722-1 CrossRefGoogle Scholar
  6. 6.
    Ghorai S, Sarkar A, Raoufi M et al (2014) Enhanced removal of methylene blue and methyl violet dyes from aqueous solution using a nanocomposite of hydrolyzed polyacrylamide grafted xanthan gum and incorporated nanosilica. ACS Appl Mater Interfaces 6:4766–4777. doi: 10.1021/am4055657 CrossRefGoogle Scholar
  7. 7.
    Salama A (2017) New sustainable hybrid material as adsorbent for dye removal from aqueous solutions. J Colloid Interface Sci 487:348–353. doi: 10.1016/j.jcis.2016.10.034 CrossRefGoogle Scholar
  8. 8.
    Kołodyńska D, Gęca M, Pylypchuk IV, Hubicki Z (2016) Development of new effective sorbents based on nanomagnetite. Nanoscale Res Lett 11:152. doi: 10.1186/s11671-016-1371-3 CrossRefGoogle Scholar
  9. 9.
    Moon RJ, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994. doi: 10.1039/c0cs00108b CrossRefGoogle Scholar
  10. 10.
    Varghese JG, Karuppannan RS, Kariduraganavar MY (2010) Development of hybrid membranes using chitosan and silica precursors for pervaporation separation of water + isopropanol mixtures. J Chem Eng Data 55:2084–2092. doi: 10.1021/je9003993 CrossRefGoogle Scholar
  11. 11.
    Kadib A, El Molvinger K, Guimon C et al (2008) Design of stable nanoporous hybrid chitosan/titania as cooperative bifunctional catalysts. Chem Mater 75:2198–2204CrossRefGoogle Scholar
  12. 12.
    Salama A (2016) Polysaccharides/silica hybrid materials: new perspectives for sustainable raw materials. J Carbohydr Chem 35:131–149. doi: 10.1080/07328303.2016.1154152 CrossRefGoogle Scholar
  13. 13.
    Budnyak TM, Yanovska ES, Kołodyńska D et al (2016) Preparation and properties of organomineral adsorbent obtained by sol–gel technology. J Therm Anal Calorim 125:1335–1351. doi: 10.1007/s10973-016-5581-9 CrossRefGoogle Scholar
  14. 14.
    Han Y-H, Taylor A, Mantle MD, Knowles KM (2007) Sol–gel-derived organic–inorganic hybrid materials. J Non-Cryst Solids 353:313–320. doi: 10.1016/j.jnoncrysol.2006.05.042 CrossRefGoogle Scholar
  15. 15.
    Salama A, El-Sakhawy M (2014) Preparation of polyelectrolyte/calcium phosphate hybrids for drug delivery application. Carbohydr Polym 113:500–506. doi: 10.1016/j.carbpol.2014.07.022 CrossRefGoogle Scholar
  16. 16.
    Roosen J, Spooren J, Binnemans K (2014) Adsorption performance of functionalized chitosan–silica hybrid materials toward rare. J Mater Chem A 2:19415–19426. doi: 10.1039/C4TA04518A CrossRefGoogle Scholar
  17. 17.
    Molvinger K, Quignard F, Brunel D et al (2004) Porous chitosan-silica hybrid microspheres as a potential catalyst. Chem Mater 16:3367–3372. doi: 10.1021/cm0353299 CrossRefGoogle Scholar
  18. 18.
    Calnan BJ, Tidor B, Biancalana S et al (1991) Arginine-mediated RNA recognition: the arginine fork. Science 252:1167–1171. doi: 10.1126/science.252.5009.1167 CrossRefGoogle Scholar
  19. 19.
    Sasaki DY, Kurihara K, Kunitake T (1991) Specific, multiple-point binding of ATP and AMP to a guanidinium-functionalized monolayer. J Am Chem Soc 113:9685–9686. doi: 10.1021/ja00025a051 CrossRefGoogle Scholar
  20. 20.
    Bouchal R, Prelot B, Hesemann P (2016) Alkylguanidinium based ionic liquids in a screening study for the removal of anionic pollutants from aqueous solution. RSC Adv 6:39125–39130. doi: 10.1039/C6RA03607D CrossRefGoogle Scholar
  21. 21.
    Bouchal R, Hamel A, Hesemann P et al (2016) Micellization behavior of long-chain substituted alkylguanidinium surfactants. Int J Mol Sci 17:223–239. doi: 10.3390/ijms17020223 CrossRefGoogle Scholar
  22. 22.
    Zhang X, Duan Y, Wang D, Bian F (2015) Preparation of arginine modified PEI-conjugated chitosan copolymer for DNA delivery. Carbohydr Polym 122:53–59. doi: 10.1016/j.carbpol.2014.12.054 CrossRefGoogle Scholar
  23. 23.
    Hu Y, Du Y, Yang J et al (2007) Synthesis, characterization and antibacterial activity of guanidinylated chitosan. Carbohydr Polym 67:66–72. doi: 10.1016/j.carbpol.2006.04.015 CrossRefGoogle Scholar
  24. 24.
    Wan Ngah WS, Teong LC, Hanafiah M, a KM (2011) Adsorption of dyes and heavy metal ions by chitosan composites: a review. Carbohydr Polym 83:1446–1456. doi: 10.1016/j.carbpol.2010.11.004 CrossRefGoogle Scholar
  25. 25.
    Pylypchuk IV, Kołodyńska D, Kozioł M, Gorbyk PP (2016) Gd-DTPA adsorption on chitosan/magnetite nanocomposites. Nanoscale Res Lett 11:168–177. doi: 10.1186/s11671-016-1363-3 CrossRefGoogle Scholar
  26. 26.
    Gandhi MR, Meenakshi S (2012) Preparation and characterization of silica gel/chitosan composite for the removal of Cu(II) and Pb(II). Int J Biol Macromol 50:650–657. doi: 10.1016/j.ijbiomac.2012.01.012 CrossRefGoogle Scholar
  27. 27.
    Budnyak T, Tertykh V, Yanoska E (2014) Chitosan immobilized on silica surface for wastewater treatment. Mater Sci 20:177–182. doi: 10.5755/ Google Scholar
  28. 28.
    Shirosaki Y, Tsuru K, Hayakawa S et al (2009) Physical, chemical and in vitro biological profile of chitosan hybrid membrane as a function of organosiloxane concentration. Acta Biomater 5:346–355. doi: 10.1016/j.actbio.2008.07.022 CrossRefGoogle Scholar
  29. 29.
    Shirosaki Y, Tsuru K, Hayakawa S et al (2005) In vitro cytocompatibility of MG63 cells on chitosan-organosiloxane. Biomaterials 26:485–493. doi: 10.1016/j.biomaterials.2004.02.056 CrossRefGoogle Scholar
  30. 30.
    Innocenzi P, Kidchob T, Yoko T (2005) Hybrid organic-inorganic sol–gel materials based on epoxy-amine systems. J Sol–Gel Sci Technol 35:225–235. doi: 10.1007/s10971-005-2290-4 CrossRefGoogle Scholar
  31. 31.
    Dukat M, Abdel-Rahman A a, Ismaiel AM et al (1996) Structure–activity relationships for the binding of arylpiperazines and arylbiguanides at 5-HT 3 serotonin receptors. J Med Chem 39:4017–4026CrossRefGoogle Scholar
  32. 32.
    Sasaki DY, Alam TM (2000) Solid-state 31P NMR study of phosphonate binding sites in guanidine-functionalized, molecular imprinted silica xerogels. Chem Mater 12:1400–1407. doi: 10.1021/cm990737r CrossRefGoogle Scholar
  33. 33.
    Bernatowicz MS, Wu Y, Matsueda GR (1992) 1 H-Pyrazole-1-carboxamidine hydrochloride: an attractive reagent for guanylation of amines and its application to peptide synthesis. J Org Chem 57:2497–2504. doi: 10.1021/jo00034a059 CrossRefGoogle Scholar
  34. 34.
    Short JH, Darby TD (1967) Sympathetic nervous system blocking agents. 3. Derivatives of benzylguanidine. J Med Chem 10:833–840CrossRefGoogle Scholar
  35. 35.
    Tsubokura K, Iwata T, Taichi M et al (2014) Direct guanylation of amino groups by cyanamide in water: catalytic generation and activation of unsubstituted carbodiimide by scandium(III) triflate. Synlett 25:1302–1306. doi: 10.1055/s-0033-1341080 CrossRefGoogle Scholar
  36. 36.
    Kurita K, Ikeda H, Yoshida Y et al (2002) Chemoselective protection of the amino groups of chitosan by controlled phthaloylation: facile preparation of a precursor useful for chemical modifications. Biomacromolecules 3:1–4. doi: 10.1021/bm0101163 CrossRefGoogle Scholar
  37. 37.
    Connell LS, Romer F, Suárez M et al (2014) Chemical characterisation and fabrication of chitosan–silica hybrid scaffolds with 3-glycidoxypropyl trimethoxysilane. J Mater Chem B 2:668. doi: 10.1039/c3tb21507e CrossRefGoogle Scholar
  38. 38.
    Toskas G, Cherif C, Hund R et al (2013) Chitosan (PEO)/ silica hybrid nanofibers as a potential biomaterial for bone regeneration. Carbohydr Polym 94:713–722. doi: 10.1016/j.carbpol.2013.01.068 CrossRefGoogle Scholar
  39. 39.
    Gong R, Ye J, Dai W et al (2013) Adsorptive removal of methyl orange and methylene blue from aqueous solution with finger-citron-residue-based activated carbon. Ind Eng Chem Res 52:14297–14303. doi: 10.1021/ie402138w CrossRefGoogle Scholar
  40. 40.
    Zhang S, Xu F, Wang Y et al (2013) Silica modified calcium alginate–xanthan gum hybrid bead composites for the removal and recovery of Pb(II) from aqueous solution. Chem Eng J 234:33–42. doi: 10.1016/j.cej.2013.08.102 CrossRefGoogle Scholar
  41. 41.
    Lorencgrabowska E, Gryglewicz G (2007) Adsorption characteristics of Congo Red on coal-based mesoporous activated carbon. Dye Pigment 74:34–40. doi: 10.1016/j.dyepig.2006.01.027 CrossRefGoogle Scholar
  42. 42.
    Periasamy K, Namasivayam C (1995) Removal of nickel(II) from aqueous solution and nickel plating industry wastewater using an agricultural waste: peanut hulls. Waste Manag 15:63–68. doi: 10.1016/0956-053X(94)00071-S CrossRefGoogle Scholar
  43. 43.
    Greluk M, Hubicki Z (2010) Kinetics, isotherm and thermodynamic studies of Reactive Black 5 removal by acid acrylic resins. Chem Eng J 162:919–926. doi: 10.1016/j.cej.2010.06.043 CrossRefGoogle Scholar
  44. 44.
    Zhao B, Zhang X, Dou C, Han R (2015) Adsorption property of methyl orange by chitosan coated on quartz sand in batch mode. Desalin Water Treat 55:1598–1608. doi: 10.1080/19443994.2014.925834 CrossRefGoogle Scholar
  45. 45.
    Obeid L, Bée A, Talbot D et al (2013) Chitosan/maghemite composite: a magsorbent for the adsorption of methyl orange. J Colloid Interface Sci 410:52–58. doi: 10.1016/j.jcis.2013.07.057 CrossRefGoogle Scholar
  46. 46.
    Tanhaei B, Ayati A, Lahtinen M, Sillanpää M (2015) Preparation and characterization of a novel chitosan/Al2O3/magnetite nanoparticles composite adsorbent for kinetic, thermodynamic and isotherm studies of methyl orange adsorption. Chem Eng J 259:1–10. doi: 10.1016/j.cej.2014.07.109 CrossRefGoogle Scholar
  47. 47.
    Hall KR, Eagleton LC, Acrivos A, Vermeulen T (1966) Pore- and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Ind Eng Chem Fundam 5:212–223. doi: 10.1021/i160018a011 CrossRefGoogle Scholar
  48. 48.
    Hammed AK, Dewayanto N, Du D et al (2016) Novel modified ZSM-5 as an efficient adsorbent for methylene blue removal. J Environ Chem Eng 4:2607–2616. doi: 10.1016/j.jece.2016.05.008 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Institut Charles Gerhardt de MontpellierUMR CNRS 5253 Université Montpellier-CNRS-ENSCMMontpellier Cedex 05France
  2. 2.Cellulose and Paper DepartmentNational Research CentreGizaEgypt

Personalised recommendations