Journal of Polymers and the Environment

, Volume 26, Issue 3, pp 1061–1071 | Cite as

Biodegradation of Pro-oxidant Filled Polypropylene Films and Evaluation of the Ecotoxicological Impact

  • Dev K. Mandal
  • Haripada Bhunia
  • Pramod K. Bajpai
  • Anil Kumar
  • Gaurav Madhu
  • Golok B. Nando
Original Paper


The biodegradability of calcium stearate (CaSt) and cobalt stearate (CoSt) filled polypropylene (PP) films were investigated in this work. The PP films were prepared using melt blending technique followed by hot press moulding. On the basis of their tensile properties, the optimum amount of pro-oxidants was taken as 0.2 phr. Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used for the characterization of optimized films. Presence of pro-oxidant in the PP was confirmed by the FTIR studies. Addition of pro-oxidants in the films decreased the thermal stability as revealed by TGA analysis. Crystallinity of the pro-oxidant filled PP decreased with addition of pro-oxidants as showen by DSC. The maximum biodegradation of CaSt and CoSt containing PP films was showen 7.65 and 8.34%, respectively with 0.2 phr. Both the microbial test and plant growth test (on corn and tomato) indicated that biodegradation intermediates were non toxic.


Polypropylene Pro-oxidant Physico-mechanical Biodegradability Ecotoxicological impact 



The project was funded by Department of Atomic Energy—Board of Research in Nuclear Sciences (DAE-BRNS), Bhabha Atomic Research Centre, Govt. of India through Sanction No. 35/14/08/2014-BRNS. Special thanks to Dr. Debaprasad Mandal, Assistance Professor, Department of Chemistry, IIT Ropar, Punjab for performing DSC testing.

Supplementary material

10924_2017_1016_MOESM1_ESM.docx (119 kb)
Supplementary material 1 (DOCX 119 KB)


  1. 1.
    Briassoulis D, Aristopoulou A, Bonora M, Verlodt I (2004) Biosyst Eng 88:131–143CrossRefGoogle Scholar
  2. 2.
    Hamilton JD, Sutcliffe R (1997) Ecological assessment of polymers. Van Nostrand Reinhold, New YorkGoogle Scholar
  3. 3.
    Kaczmarek H, Ołdak D, Malanowski P, Chaberska H (2005) Polym Degrad Stab 88:189–198CrossRefGoogle Scholar
  4. 4.
    Jakubowicz I (2003) Polym Degrad Stab 80:39–43CrossRefGoogle Scholar
  5. 5.
    Albertsson AC, Barenstedt C, Karlsson S (1993) J Polym Environ 1:241–245CrossRefGoogle Scholar
  6. 6.
    Khabbaz F (2001) Environmentally Degradable Polyethylene: Effects of Additives and Environment on the Degradation and Degradation products. Ph. D. Thesis, Department of Fiber and Polymer Technology, KTH School of Chemical Science and Engineering. SwedenGoogle Scholar
  7. 7.
    Konduri MK, Koteswarareddy G, Rohini Kumar D, Venkata Reddy B, Lakshmi Narasu M (2011) J Appl Polym Sci 120:3536–3545CrossRefGoogle Scholar
  8. 8.
    Ballice L, Reimert R (2002) Chem Eng Process 41:289–296CrossRefGoogle Scholar
  9. 9.
    Bockhorn H, Hornung A, Hornung U (1999) J Anal Appl Pyrolysis 48:93–109CrossRefGoogle Scholar
  10. 10.
    Gao Z, Kaneko T, Amasaki I, Nakada M (2003) Polym Degrad Stab 80:269–274CrossRefGoogle Scholar
  11. 11.
    Chan J, Balke S (1997) Polym Degrad Stab 57:127–134CrossRefGoogle Scholar
  12. 12.
    Nakatani H, Suzuki S, Tanaka T, Terano M (2007) Polym Int 56:1147–1151CrossRefGoogle Scholar
  13. 13.
    Steller R, Meissner W (1998) Polym Degrad Stab 60:471–480CrossRefGoogle Scholar
  14. 14.
    Ramis X, Cadenato A, Salla J, Morancho J, Valles A, Contat L, Ribes A (2004) Polym Degrad Stab 86:483–491CrossRefGoogle Scholar
  15. 15.
    Morancho J, Ramis X, Fernández X, Cadenato A, Salla J, Vallés A, Contat L, Ribes A (2006) Polym Degrad Stabil 91:44–51CrossRefGoogle Scholar
  16. 16.
    Orhan Y, Hrenovic J, Buyukgungor H (2004) Acta Chim Slov 51:579–588Google Scholar
  17. 17.
    Jain K, Madhu G, Bhunia H, Bajpai PK, Reddy MS (2014) J Polym Mater 31:63–68Google Scholar
  18. 18.
    Jain K, Madhu G, Bhunia H, Bajpai PK, Nando GB, Reddy MS (2015) J Polym Eng 35:407–415CrossRefGoogle Scholar
  19. 19.
    Madhu G, Bhunia H, Bajpai PK, Nando GB (2016) Polym Sci Ser A 58:57–75CrossRefGoogle Scholar
  20. 20.
    Santhoskumar A, Palanivelu K (2012) Int J Polym Mater 61:793–808CrossRefGoogle Scholar
  21. 21.
    Abrusci C, Pablos JL, Corrales T, Lopez-Marin J, Marin I, Catalina F (2011) Int Biodeterior Biodegradation 65:451–459CrossRefGoogle Scholar
  22. 22.
    Montagna LS, da Camargo Forte MM, Santana RMC (2013) J Mater Sci Eng A 3:123–131Google Scholar
  23. 23.
    Roy P, Surekha P, Raman R, Rajagopal C (2009) Polym Degrad Stab 94:1033–1039CrossRefGoogle Scholar
  24. 24.
    Mallakpour S, Banihassan K, Sabzalian MR (2013) J Polym Environ 21:568–574CrossRefGoogle Scholar
  25. 25.
    Bardi MA, Munhoz MM, Auras RA, Machado LD (2014) Ind Crops Prod 60:326–334CrossRefGoogle Scholar
  26. 26.
    OCED 208, Terrestial plant growth test; OECD guidelines for Testing of Chemicals, 1984Google Scholar
  27. 27.
    Gong P, Wilke B-M, Strozzi E, Fleischmann S (2001) Chemosphere 44:491–500CrossRefGoogle Scholar
  28. 28.
    Haldia Patrochemcial ltd., Technical Data Sheet (F-110 Pdf). Accessed 23 Feb 2017
  29. 29.
    Clesceri LS, Greenberg AE, Trussell RR (eds) (1989) Standard methods for the examination of water and wastewater, 17th edn. American Public Health Association (APHA), American Water Works Association (AWWA), Water Pollution Control Federation (WPCF), Washington, DCGoogle Scholar
  30. 30.
    Singh G, Kaur N, Bhunia H, Bajpai PK, Mandal UK (2012) J Appl Polym Sci 124:1993–1998CrossRefGoogle Scholar
  31. 31.
    Anjum N, Gupta B, Riquet AM (2006) J Appl Polym Sci 101:772–778CrossRefGoogle Scholar
  32. 32.
    ASTM, D. 5338: Standard Test Method for Determining Aerobic Biodegradation of Plastic Materials under Controlled Composting Conditions 2011Google Scholar
  33. 33.
    Aneja K (2008) A textbook of basic and applied microbiology. New Age International, New Delhi, pp 235–236Google Scholar
  34. 34.
    Mallakpour S, Dehghani M, Sabzalian MR (2013) J Polym Res 20:85–91CrossRefGoogle Scholar
  35. 35.
    Rosa D, Grillo D, Bardi M, Calil M, Guedes C, Ramires E, Frollini E (2009) Polym Test 28:836–842CrossRefGoogle Scholar
  36. 36.
    Muthukumar T, Aravinthan A, Mukesh D (2010) Polym Degrad Stab 95:1988–1993CrossRefGoogle Scholar
  37. 37.
    El-Arnaouty M, Abdel Ghaffar A, El Shafey H (2008) J Appl Polym Sci 107:744–754CrossRefGoogle Scholar
  38. 38.
    Marschner H (1995) Functions of mineral nutrients: macronutrients. mineral nutrition of higher plants, 2nd edn. Academic Press, London, pp 299–312Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Dev K. Mandal
    • 1
  • Haripada Bhunia
    • 1
  • Pramod K. Bajpai
    • 1
  • Anil Kumar
    • 2
  • Gaurav Madhu
    • 3
  • Golok B. Nando
    • 4
  1. 1.Department of Chemical EngineeringThapar UniversityPatialaIndia
  2. 2.Department of BiotechnologyThapar UniversityPatialaIndia
  3. 3.Indian Institute of PackagingMumbaiIndia
  4. 4.Rubber Technology CentreIndian Institute of TechnologyKharagpurIndia

Personalised recommendations