Skip to main content
Log in

Improvement of Impact Toughness of Biodegradable Poly(butylene succinate) by Melt Blending with Sustainable Biobased Glycerol Elastomers

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Poly(butylene succinate) (PBS) was melt blended with glycerol based polyesters (PGS) synthesized from pure and technical glycerol aiming to improve the impact strength of PBS. It was found that after addition of 30 wt% PGS to PBS its impact strength was significantly increased by 344% (from 31.9 to 110 J/m) and its elongation at break was maintained at 220%. Infrared spectra of the blends showed the presence of hydroxyl groups from the PGS phase suggesting that hydrogen bonding between the phases could be responsible for a good stress transfer and an efficient toughening in the PBS/PGS blends. Scanning electron microscopy imaging showed a good dispersion of PGS phase into PBS with a PGS particle size of 10 μm and less and no agglomeration. Addition of PGS to PBS was shown to be an effective strategy for improvement of PBS impact resistance without serious detrimental effects on its thermal and rheological properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Reddy MM, Vivekanandhan S, Misra M, et al (2013) Biobased plastics and bionanocomposites: current status and future opportunities. Prog Polym Sci 38:1653–1689. doi:10.1016/j.progpolymsci.2013.05.006

    Article  CAS  Google Scholar 

  2. Fujimaki T (1998) Processability and properties of aliphatic polyesters, “BIONOLLE”, synthesized by polycondensation reaction. Polym Degrad Stab 59:209–214. doi:10.1016/S0141-3910(97)00220-6

    Article  CAS  Google Scholar 

  3. Gigli M, Fabbri M, Lotti N et al (2016) Poly(butylene succinate)-based polyesters for biomedical applications: a review in memory of our beloved colleague and friend Dr. Lara Finelli. Eur Polym J 75:431–460. doi:10.1016/j.eurpolymj.2016.01.016

    Article  CAS  Google Scholar 

  4. Novamont Press Office - Opening Of The World’s First Industrial Scale Plant For The Production Of Butanediol Via Fermentation Of Renewable Raw Materials - Novamont - Press. http://www.novamont.com/eng/read-press-release/mater-biotech/. Accessed 27 Feb 2017

  5. (2015) Cool new materials for durables. Plast Eng Oct Ed 12–17.

  6. (2015) New High Biocontent Biopolymers | Plastics Engineering Blog on WordPress.com. In: http://plasticsengineeringblog.com/2015/09/03/new-high-biocontent-biopolymers/. http://plasticsengineeringblog.com/2015/09/03/new-high-biocontent-biopolymers/. Accessed 17 Feb 2016

  7. Xu J, Guo BH (2010) Poly(butylene succinate) and its copolymers: research, development and industrialization. Biotechnol J 5:1149–1163. doi:10.1002/biot.201000136

    Article  CAS  Google Scholar 

  8. Run M, Wang J, Yao M et al (2013) Influences of hyperbranched poly(amide-ester) on the properties of poly(butylene succinate). Mater Chem Phys 139:988–997

    Article  CAS  Google Scholar 

  9. Hemsri S, Thongpin C, Moradokpermpoon N, et al (2015) Mechanical properties and thermal stability of poly(butylene succinate)/acrylonitrile butadiene rubber blend. Macromol Symp 354:145–154. doi:10.1002/masy.201400129

    Article  CAS  Google Scholar 

  10. Wang J, Zheng L, Li C et al (2012) Fully biodegradable blends of poly(butylene succinate) and poly butylene carbonate): miscibility, thermal properties, crystallization behavior and mechanical properties. Polym Test 31:39–45. doi:10.1016/j.polymertesting.2011.09.005

    Article  Google Scholar 

  11. Muthuraj R, Misra M, Mohanty AK (2015) Hydrolytic degradation of biodegradable polyesters under simulated environmental conditions. J Appl Polym Sci. doi:10.1002/app.42189

    Google Scholar 

  12. Can E, Bucak S, Kınacı E et al (2014) Polybutylene succinate (PBS)–Polycaprolactone (PCL) blends compatibilized with poly(ethylene oxide)- block -poly(propylene oxide)- block -poly(ethylene oxide) (PEO–PPO–PEO) copolymer for biomaterial applications. Polym Plast Technol Eng 53:1178–1193. doi:10.1080/03602559.2014.886119

    Article  CAS  Google Scholar 

  13. Ciriminna R, Della PC, Rossi M, Pagliaro M (2014) Understanding the glycerol market. Eur J Lipid Sci Technol 116:1432–1439. doi:10.1002/ejlt.201400229

    Article  CAS  Google Scholar 

  14. Ardi MS, Aroua MK, Hashim NA (2015) Progress, prospect and challenges in glycerol purification process: a review. Renew Sustain Energy Rev 42:1164–1173. doi:10.1016/j.rser.2014.10.091

    Article  CAS  Google Scholar 

  15. Valerio O, Horvath T, Pond C et al (2015) Improved utilization of crude glycerol from biodiesel industries: synthesis and characterization of sustainable biobased polyesters. Ind Crops Prod 78:141–147. doi:10.1016/j.indcrop.2015.10.019

    Article  CAS  Google Scholar 

  16. Valerio O, Pin JM, Misra M, Mohanty AK (2016) Synthesis of glycerol-based biopolyesters as toughness enhancers for polylactic acid bioplastic through reactive extrusion. ACS Omega 1:1284–1295. doi:10.1021/acsomega.6b00325

    Article  CAS  Google Scholar 

  17. Pin J-M, Valerio O, Misra M, Mohanty A (2017) Impact of butyl glycidyl ether comonomer on poly(glycerol–succinate) architecture and dynamics for multifunctional hyperbranched polymer design. Macromolecules 50:732–745. doi:10.1021/acs.macromol.6b02424

    Article  CAS  Google Scholar 

  18. Bueno L, Toro C, Martín M (2015) Techno-economic evaluation of the production of polyesters from glycerol and adipic acid. Chem Eng Res Des 93:432–440. doi:10.1016/j.cherd.2014.05.010

    Article  CAS  Google Scholar 

  19. Valerio O (2014) Synthesis and Use of Glycerol Based Hyperbranched Biopolyesters as Impact Modifiers for Poly (Butylene Succinate) Matrix Dissertation. University of Guelph

  20. Liu H, Song W, Chen F et al (2011) Interaction of microstructure and interfacial adhesion on impact performance of polylactide (PLA) ternary blends. Macromolecules 44:1513–1522. doi:10.1021/ma1026934

    Article  CAS  Google Scholar 

  21. Kfoury G, Raquez J-M, Hassouna F et al (2015) Toughening of poly(lactide) using polyethylene glycol methyl ether acrylate: reactive versus physical blending. Polym Eng Sci 55:1408–1419. doi:10.1002/pen.24085

    Article  CAS  Google Scholar 

  22. Signori F, Boggioni A, Righetti MC, et al (2015) Evidences of transesterification, chain branching and cross-linking in a biopolyester commercial blend upon reaction with dicumyl peroxide in the melt. Macromol Mater Eng 300:153–160. doi:10.1002/mame.201400187

    Article  CAS  Google Scholar 

  23. Li X, Hong AT-L, Naskar N, Chung H-J (2015) Criteria for quick and consistent synthesis of poly(glycerol sebacate) for tailored mechanical properties. Biomacromolecules 16:1525–1533. doi:10.1021/acs.biomac.5b00018

    Article  CAS  Google Scholar 

  24. Li Y, Cook WD, Moorhoff C, et al (2013) Synthesis, characterization and properties of biocompatible poly(glycerol sebacate) pre-polymer and gel. Polym Int 62:534–547. doi:10.1002/pi.4419

    Article  CAS  Google Scholar 

  25. Brioude M de M, Guimarães DH, Fiúza R da P, et al (2007) Synthesis and characterization of aliphatic polyesters from glycerol, by-product of biodiesel production, and adipic acid. Mater Res 10:335–339.

    Article  Google Scholar 

  26. Tang J, Zhang Z, Song Z et al (2006) Synthesis and characterization of elastic aliphatic polyesters from sebacic acid, glycol and glycerol. Eur Polym J 42:3360–3366. doi:10.1016/j.eurpolymj.2006.09.008

    Article  CAS  Google Scholar 

  27. Lin Y, Zhang K-Y, Dong Z-M et al (2007) Study of hydrogen-bonded blend of polylactide with biodegradable hyperbranched poly(ester amide). Macromolecules 40:6257–6267. doi:10.1021/ma070989a

    Article  CAS  Google Scholar 

  28. Perkins WG (1999) Polymer toughness and impact resistance. Polym Eng Sci 39:2445–2460. doi:10.1002/pen.11632

    Article  CAS  Google Scholar 

  29. Muthuraj R, Misra M, Mohanty AK (2014) Biodegradable poly(butylene succinate) and poly(butylene adipate-co-terephthalate) blends: reactive extrusion and performance evaluation. J Polym Environ 22:336–349. doi:10.1007/s10924-013-0636-5

    Article  CAS  Google Scholar 

  30. Wyatt VT, Jones K (2012) Quantification of monomers in poly(glycerol-co-diacid) gels using gas chromatography. J Biobased Mater Bioenergy 6:119–124. doi:10.1166/jbmb.2012.1189

    Article  CAS  Google Scholar 

  31. Stumbé JF, Bruchmann B (2004) Hyperbranched polyesters based on adipic acid and glycerol. Macromol Rapid Commun 25:921–924. doi:10.1002/marc.200300298

    Article  Google Scholar 

  32. Pongtanayut K, Thongpin C, Santawitee O (2013) The effect of rubber on morphology, thermal properties and mechanical properties of PLA/NR and PLA/ENR blends. Energy Procedia 34:888–897. doi:10.1016/j.egypro.2013.06.826

    Article  CAS  Google Scholar 

  33. Ishida S, Nagasaki R, Chino K et al (2009) Toughening of poly(l-lactide) by melt blending with rubbers. J Appl Polym Sci 113:558–566. doi:10.1002/app.30134

    Article  CAS  Google Scholar 

  34. Qiu Z, Ikehara T, Nishi T (2003) Melting behaviour of poly(butylene succinate) in miscible blends with poly(ethylene oxide). Polymer 44:3095–3099. doi:10.1016/S0032-3861(03)00216-7

    Article  CAS  Google Scholar 

  35. Qiu Z, Komura M, Ikehara T, Nishi T (2003) DSC and TMDSC study of melting behaviour of poly(butylene succinate) and poly(ethylene succinate). Polymer 44:7781–7785. doi:10.1016/j.polymer.2003.10.045

    Article  CAS  Google Scholar 

  36. Yasuniwa M, Satou T (2002) Multiple melting behavior of poly(butylene succinate). I. Thermal analysis of melt-crystallized samples. J Polym Sci Part B Polym Phys 40:2411–2420. doi:10.1002/polb.10298

    Article  CAS  Google Scholar 

  37. Zhou W, Yuan S, Chen Y, Bao L (2012) Morphology and hydrogen-bond restricted crystallization of poly(butylene succinate)/cellulose diacetate blends. J Appl Polym Sci 124:3124–3131. doi:10.1002/app.35351

    Article  CAS  Google Scholar 

  38. Kozlowski M, Bucknall CB (2001) Blends containing core-shell impact modifiers Part 2. Melt rheology of rubber-toughened plastics (IUPAC Technical Report). Pure Appl Chem 73:913–926. doi:10.1351/pac200173060913

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA), Canada/University of Guelph-Bioeconomy for Industrial Uses Research Program Theme (Project # 200001 and 200283); OMAFRA, Canada New Directions Project # 050155; the Ontario Ministry of Economic Development and Innovation (MEDI), Canada, Ontario Research Fund, Research Excellence Round 4 Program (ORF-RE04) (Project # 050231 and 050289); the Natural Sciences and Engineering Research Council (NSERC), Canada - Discovery Grants (Project # 401111) for the financial support to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amar K. Mohanty.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valerio, O., Misra, M. & Mohanty, A.K. Improvement of Impact Toughness of Biodegradable Poly(butylene succinate) by Melt Blending with Sustainable Biobased Glycerol Elastomers. J Polym Environ 26, 1078–1087 (2018). https://doi.org/10.1007/s10924-017-1015-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-1015-4

Keywords

Navigation