Journal of Polymers and the Environment

, Volume 26, Issue 3, pp 926–937 | Cite as

Selective Lead(II) Adsorption and Flocculation Characteristics of the Grafted Sodium Alginate: A Comparative Study

  • Tridib Tripathy
  • Haradhan Kolya
  • Subinoy Jana
Original Paper


Synthesis of sodium alginate-g-poly(acrylamide-co-N-methylacrylamide) [S-III], sodium alginate-g-poly(N-methylacrylamide-co-N,N-dimethylacrylamide) [S-II], sodium alginate-g-poly(acrylamide-co-N,N-dimethylacrylamide) [S-I]. Sodium alginate-g-poly(N,N-dimethylacrylamide) [SAG-g-PDMA] and sodium alginate-g-poly(acrylamide) [SAG-g-PAM] were prepared by solution polymerization technique using potassium peroxydisulfate as the initiator at 70 °C in water medium. The graft copolymers were characterized by FTIR and NMR (1H and 13C) spectroscopy, SEM and XRD studies. All the five graft copolymers were used to remove Pb(II) ions from the aqueous solution and also in flocculation studies of kaolin clay (1.0 wt%), silica (1.0 wt%) and iron ore slime (0.25 wt%) suspensions. A comparative studies of all the five graft copolymers were also made in both the two cases. The Pb(II) ion removal capacity of all the graft copolymers follows the order S-III > SAG-g-PAM > S-II > SAG-g-PDMA > S-I. But the flocculation performance of the graft copolymers follows the order S-II > S-I > S-III > SAG-g-PDMA > SAG-g-PAM. S-III was also used for the competitive metal ion removal with Hg(II), Cd(II), Cu(II) and Zn(II). Pb(II) adsorption of S-III (the best Pb(II) ion adsorber) follows pseudo second order rate equation and Langmuir adsorption isotherm.


Graft copolymerization Flocculation N,N-dimethylacrylamide N-methylacrylamide Sodium alginate Pb(II) ion removal 



Financial support from Department of Science and Technology (DST), Govt. of West Bengal [868 (sanc)/ST/P/S & T/15G-9/2015 dated 15.01.2016] for carrying out the research work in earnestly acknowledged.


  1. 1.
    Kumar PS (2013) Environ Prog Sustain Energy 33:55–64CrossRefGoogle Scholar
  2. 2.
    Wang I, Zhang J, Ahao R, Li Y, Zhang C (2010) Bioresour Technol 101:5808–5814CrossRefGoogle Scholar
  3. 3.
    Deblonde T, Cossu-Leguille C, Hantemann P (2011) Int J Hyg Environ Health 214:442–448CrossRefGoogle Scholar
  4. 4.
    Knoig TN, Shulami S, Rytwo G (2012) Appl Clay Sci 67–68:119–124Google Scholar
  5. 5.
    Balasubramanian R, Perumal SV, Vijayaraghavan K (2009) Ind Eng Chem Res 48:2093–2099CrossRefGoogle Scholar
  6. 6.
    King P, Rakesh N, Beenalahari S, Kumar Y, Prasad VSRK (2007) J Hazard Mater 142:340–347CrossRefGoogle Scholar
  7. 7.
    Keles E, Ozer AK, Yoruk S (2010) Desalination 253:124–128CrossRefGoogle Scholar
  8. 8.
    Santhy K, Selvapathy P (2004) Sep Sci Technol 39:3331–3351CrossRefGoogle Scholar
  9. 9.
    Rivas BL, Pereira ED, Moreno- Villoslada I (2003) Prog Polym Sci 28:173–208CrossRefGoogle Scholar
  10. 10.
    Rivas RL, Villoslade-moreno I (1998) Macromol Chem Phys 199:1153–1160CrossRefGoogle Scholar
  11. 11.
    Kolya H, Tripathy T (2013) Int J Biomacrmol 62:557–564CrossRefGoogle Scholar
  12. 12.
    Sasmal D, Singh RP, Tripathy T (2015) Colloid Surface A 482:575–584CrossRefGoogle Scholar
  13. 13.
    Kolya H, Tripathy T (2015) Polym Int 64:1336–1351CrossRefGoogle Scholar
  14. 14.
    Luo X, Liu L, Deng F, Luo S (2013) J Mater Chem A 1:8280–8286CrossRefGoogle Scholar
  15. 15.
    Kanwal F, Rehman R, Anwar J, Saeed M (2013) Asian J Chem 25:2399–2404CrossRefGoogle Scholar
  16. 16.
    Bratby J (1980) Coagulation and Flocculation, Chap. 8. Uplands Press, ClaydenGoogle Scholar
  17. 17.
    Girma KB, Lorenz V, Blaurock S, Edelman FT (2005) Coord Chem Rev 249:1283–1293CrossRefGoogle Scholar
  18. 18.
    Clayden J, Greeves N, Waren S, Wothers P (2001) Organic chemistry. Oxford University Press, Oxford, p 293Google Scholar
  19. 19.
    Crini G, Peinday NH, Gimbert F, Robert C (2007) Sep Purif Technol 53:97–110CrossRefGoogle Scholar
  20. 20.
    Langmuir I (1918) J Am Chem Soc 40(9):1361–1403CrossRefGoogle Scholar
  21. 21.
    Mackay G (1982) J Chem Technol Biotechnol 32(7–12):759–772Google Scholar
  22. 22.
    Gueu S, Yao B, Adouby K, Ado G (2007) Int J Environ Sci Technol 4:11–17CrossRefGoogle Scholar
  23. 23.
    M. A. K. Hanaflash, Ibrahim SC, M. Z. A. Yahya (2006) J Appl Sci Res 2:1169–1174Google Scholar
  24. 24.
    Gupta VK, Ali I (2004) J Collid Interface Sci 271:321–328CrossRefGoogle Scholar
  25. 25.
    Dicninson E, Erikson I (1991) Adv Colloid Interface Sci, 34:1–2CrossRefGoogle Scholar
  26. 26.
    R. P. Singh, Advance turbulent drag reducing and flocculating materials based on polysaccharides (1995), in: P. N. Prasad, J. E. Mark, T. J. Fai (Eds). Polymers and other advance materials, emerging technologies buisiness opportunities. Plenum Press, New York, pp 227–249CrossRefGoogle Scholar
  27. 27.
    Brostow W, Pal S, Singh RP (2007) Mater Lett 61:4381–4384CrossRefGoogle Scholar
  28. 28.
    Kulicke WM, Knievrske R, Klein J (1982) Prog Polym Sci 8:373–468CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Postgraduate Division of ChemistryMidnapore College (Autonomous)MidnaporeIndia

Personalised recommendations