Advertisement

Journal of Polymers and the Environment

, Volume 26, Issue 1, pp 383–395 | Cite as

Synthesis and Characterization of Novel Poly (Acrylic Acid/Sodium Alginate/Sodium Humate) Superabsorbent Hydrogels. Part II: The Effect of SH Variation on Cu2+, Pb2+, Fe2+ Metal Ions, MB, CV Dye Adsorption Study

  • Shipra Agnihotri
  • Reena Singhal
Original Paper

Abstract

A novel superabsorbent hydrogel (SAHs) composed of (acrylic acid, sodium alginate and sodium humate) (AAc/NaAlg/SH) SAHs were tested as adsorbent for metal ions Cu2+, Pb2+, and Fe2+ ions as well as MB and CV dyes. The influence of SH concentration varies from 6.97, 8.04, 9.09, 10.11% and 11 wt% were designated as S1, S2, S3, S4, S5, respectively. The synthesized superabsorbent hydrogel were used for the adsorption of Cu2+, Pb2+, Fe2+ and MB and CV dyes from their aqueous solutions. The binding capacity for Cu2+, Pb2+, Fe2+ ions were 311 mg/gm/L at 850 mg/L, 209 mg/gm/L at 850 mg/L and 197 mg/gm/L at 850 mg/L for initial ion concentration respectively and MB and CV dyes molecules were 323 mg/gm/L at 360 mg/L, 289 mg/gm/L at 360 mg/L for initial molecule concentration per gram of AAc/NaAlg/SH containing 9.09 wt% SH content. The adsorption data obeyed Langmuir sorption isotherms.

Keywords

Superabsorbent hydrogel (SAHs) Sodium humate (SH) Acrylic acid (AAc) Sodium alginate (NaAlg) Heavy metal ions Dyes adsorption 

References

  1. 1.
    Oliva A, Molinari A, Zuniga F, Ponce P (2002) Microchim Acta 140:201–210.CrossRefGoogle Scholar
  2. 2.
    Paulino AT, Guilherme MR, Reis AV, Campese GM, Muniz EC, Nozaki JJ (2006) J Colloid Interface Sci 3:55–62CrossRefGoogle Scholar
  3. 3.
    Bekiari V, Sotiropoulou M, Bokias G, Lianos P (2008) Colloids Surf A 312: 214–218.CrossRefGoogle Scholar
  4. 4.
    Tenorio JAS, Espinosa DCR (2001) Waste Manag 21:637–642CrossRefGoogle Scholar
  5. 5.
    Esalah JO, Weber ME, Vera JH (2000) Can J Chem Eng 78:948CrossRefGoogle Scholar
  6. 6.
    Hirata S, Honda K, Kumamaru T (1989) Anal Chim Acta 221:65–76CrossRefGoogle Scholar
  7. 7.
    Buerge-Weirich D, Hari R, Xue H, Behra P, Sigg L (2002) Environ Sci Technol 36:328–336.CrossRefGoogle Scholar
  8. 8.
    Yan G, Viraraghavan T, Rouxii M (2001) Bioresour Technol 78:243–249CrossRefGoogle Scholar
  9. 9.
    Nadeem MAR, Bhatti HN, Ahmad NR, Ansari TM (2007) J Hazard Mater 139:345–355CrossRefGoogle Scholar
  10. 10.
    Bhattacharya AK, Naiya TK, Mandal SN, Das SK (2008) Chem Eng J 137:529Google Scholar
  11. 11.
    Naiya TK, Bhattacharya AK, Das SK (2008) J Colloid Interface Sci 325:48–56CrossRefGoogle Scholar
  12. 12.
    Wang W, Wang A (2009) J Appl Polym Sci 112:2102CrossRefGoogle Scholar
  13. 13.
    Dilek S, Sibel D, Murat T (2008) Radiat Phys Chem 77:447–452CrossRefGoogle Scholar
  14. 14.
    Hua S, Wang A (2009) Carbohydr Polym 75:79–84CrossRefGoogle Scholar
  15. 15.
    Cozzolino A, Conte P, Piccolo A (2001) Soil Biol Biochem 33:563–571CrossRefGoogle Scholar
  16. 16.
    Li W, Liu S (2012) J Porous Mater 19: 567–572.CrossRefGoogle Scholar
  17. 17.
    Dicicco M, Duong T, Chu A, Jansen SA (2003) J Biomed Mater Res 137: 137–149.CrossRefGoogle Scholar
  18. 18.
    Liu J, Wang Q, Wang A (2007) Carbohydr Polym 70: 166–173.CrossRefGoogle Scholar
  19. 19.
    Akar T, Tunali S (2005) Miner Eng 18:1099CrossRefGoogle Scholar
  20. 20.
    Yi J-Z, Ma Y-Q, Zhang M (2008) Bioresour Technol 99:5362–5367CrossRefGoogle Scholar
  21. 21.
    Srivastava VC, Swamy MM, Mall ID, Prasad B, Mishra IM (2006) Colloids Surf A 272:89–104CrossRefGoogle Scholar
  22. 22.
    Junda J, Wong J, Saueprasearsit P (2010) Environ Res 4:244–250.CrossRefGoogle Scholar
  23. 23.
    Periasamy K, Namasivayam C (1995) Waste Manag 15:63–68.CrossRefGoogle Scholar
  24. 24.
    Langmuir I (1918) J Am Chem Soc 40:1361–1403CrossRefGoogle Scholar
  25. 25.
    Singh K, Singh AK, Hasan SH (2006) Bioresour Technol 97:994–1001CrossRefGoogle Scholar
  26. 26.
    Milosavljevic NB, Ristic MB, Peric G, Filipovic A, Strbac JM, Rakocevic SB, Kalagasidis ZL, Krusic MT (2011) Colloids Surf A 338:59–69CrossRefGoogle Scholar
  27. 27.
    Kalyani S, Ajitha P, Srinivasa J, Krishnaiah RPA (2005) Sep Sci Technol 40:1483–1495CrossRefGoogle Scholar
  28. 28.
    Moradi O, Aghaie M, Zare K, Monajjemi M, Aghaie H (2009) J Hazard Mater 170:673CrossRefGoogle Scholar
  29. 29.
    Kara A, Uzun L, Besirli N, Denizli A (2004) J Hazard Mater 106:93–99CrossRefGoogle Scholar
  30. 30.
    Radina H, Ghoreyshi A, Younesi H (2011) Iranica J Energy Environ 2:250–257.Google Scholar
  31. 31.
    Yetimoglu EK, Kahraman MV, Ercan O, Akdemir ZS, Apohan NK (2007) React Funct Polym 67: 451–460.CrossRefGoogle Scholar
  32. 32.
    Ma YL, Xu ZR, Guo T, You P (2004) J Colloid Interface Sci 280:283–288CrossRefGoogle Scholar
  33. 33.
    Mahadavinia GR, Bazmizeynabad F, Seyyedi B (2015) Desalin Water Treat 53:2529–2539CrossRefGoogle Scholar
  34. 34.
    Vadivelan V, Kumar KV (2005) J Colloid Interface Sci 286:90–100.CrossRefGoogle Scholar
  35. 35.
    Paulino AT, Guilherme MR, Reis AV, Campese GM, Muniz EC, Nozaki J (2006) J Colloid Interface Sci 301: 55–62.CrossRefGoogle Scholar
  36. 36.
    Chatterjee S, Chatterji T, Lim SR, Woo SH (2011) Environ Technol 32: 1503–1514.CrossRefGoogle Scholar
  37. 37.
    Mahadavinia GR, Mosallanezhad A (2016) J Water Process Eng 10: 143–155CrossRefGoogle Scholar
  38. 38.
    Mahadavinia GR, Zhalebaghy R (2012) J Mater Environ Sci 3:895–906Google Scholar
  39. 39.
    Li P, Siddaramaiah, Kim NH, Heo SB, Lee JH (2008) Compos B Eng 19: 1754.Google Scholar
  40. 40.
    Mahdavinia GR, Aghaie H, Sheykhloie H, Vardini MT, Etemadi H (2013) Carbohydr Polym 98:365CrossRefGoogle Scholar
  41. 41.
    Mahdavinia GR, Massoudi A, Baghban A, Shokri E (2014) J Environ Eng 2:1587Google Scholar
  42. 42.
    Gholami M, Vardini MT, Mahdavinia GR (2015) Carbohydrate 25:2795–2803Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Plastic TechnologyHarcourt Butler Technical UniversityKanpurIndia

Personalised recommendations