Journal of Polymers and the Environment

, Volume 25, Issue 4, pp 1342–1347 | Cite as

Two-Step Procedure of Fly Ash Modification as an Alternative Method for Creation of Functional Composite

  • Jolanta SrokaEmail author
  • Andrzej Rybak
  • Robert Sekula
  • Paulina Filipczak
  • Marcin Kozanecki
  • Maciej Sitarz
Original Paper


An appropriate filler is a key component required to achieve an useful composite with expected properties. Not only sophisticated types of filler, like graphene are popular, but also more common ones, like silica flour or fly ash because of their low costs. Besides production costs, adequate size and possibility of functionalization of particles surface to create stable bonds with a matrix are essential in filler selection. To create an useful filler for epoxy resin based composites with use of a waste material, namely fly ash, two-step procedure was proposed. In the first part, raw material was sieved and five different ranges of the filler size were obtained. After mechanical tests with fracture toughness, tensile strength and Young Modulus, as well thermal conductivity, the best size of the fly ash was chosen for further modification. During the second step, filler was modified with coupling agent [3-(2-aminoethylamino)propyl]trimethoxysilane in order to enhance the coupling between particular components of composite. Presence of the silane layer was confirmed with infrared spectroscopy and scanning electron microscopy measurements, whilst prepared epoxy composite filled with silanized fly ash was examined similarly as previous composites. Obtained results have proved the significant influence of size of a filler and bonding to the matrix on mechanical and thermal properties of fly ash-epoxy resin composite. Proposed simple method of fly ash modification is an environmentally friendly way for utilization of the fly ash. Moreover, it creates an alternative material applicable in electrical devices as functional composite.


Fly ash Epoxy resin Sieving process Silane coupling agent Functional composite 


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Zamanian M, Mortezaei M, Salehnia B, Jam JE (2013) Eng Fract Mech 97:193–206CrossRefGoogle Scholar
  2. 2.
    Ragosta G, Abbate M, Musto P, Scarinzi G, Mascia L (2005) Polymer 46:10506–10516CrossRefGoogle Scholar
  3. 3.
    Tsekmes IA, Kochetov R, Morshuis PHF, Smit JJ, Iizuka T, Tatsumi K, Tanaka T (2014) Annual report conference on electrical insulation and dielectric phenomena, pp 647–650Google Scholar
  4. 4.
    Gaska K, Rybak A, Kapusta Cz, Sekula R, Siwek A (2014) Polym Advan Technol 26: 26–31Google Scholar
  5. 5.
    Gaska K, Kmita G, Rybak A, Sekula R, Goc K, Kapusta Cz (2015) J Mater Sci 50:2510–2516CrossRefGoogle Scholar
  6. 6.
    Rybak A, Gaska K (2015) J Mater Sci 50:7779–7789CrossRefGoogle Scholar
  7. 7.
    Gu J, Wu G, Zhao X (2009) Polym Compos 30: 232–238CrossRefGoogle Scholar
  8. 8.
    Singla M, Chawla V (2010) J Min Mater Charact Eng 9: 199–210Google Scholar
  9. 9.
    Srivastava VK, Shembekar PS (1990) J Mater Sci 25:3513–3516CrossRefGoogle Scholar
  10. 10.
    Fu SY, Feng X, Lauke B, Mai YW (2008) Compos Part B 39:933–961CrossRefGoogle Scholar
  11. 11.
    Cho J, Joshi MS, Sun TC (2006) Compos Sci Technol 66:1941–1952CrossRefGoogle Scholar
  12. 12.
    Kemaloglu S, Ozkoc G, Aytac A (2010) Thermochim Acta 499:40–47CrossRefGoogle Scholar
  13. 13.
    Saleh NA, Al-Maamori MH, Al-jebory MB (2014) Adv Phys Theor Appl 30: 1–8Google Scholar
  14. 14.
    Kulkarni MB, Bambole VA, Mahanwar PA (2014) J Thermoplast Compos 27: 251–267CrossRefGoogle Scholar
  15. 15.
    Tsekmes A, Kochetov R, Morshuis PHF, Smit JJ (2013) Proceedings IEEE International Conference on Solid Dielectrics, pp 678–681Google Scholar
  16. 16.
    Han Z, Wood JW, Herman H, Zhang C, Stevens GC (2008) IEEE Inter Symp El Ins, pp 497–501Google Scholar
  17. 17.
    Agari Y, Uno T (1985) J Appl Polym Sci 30:2225–2235CrossRefGoogle Scholar
  18. 18.
    Plueddemann EP (1991) Silane coupling agents, 3rd edn. Plenum press, New YorkCrossRefGoogle Scholar
  19. 19.
    Rong MZ, Zhang MQ, Ruan WH (2006) Mater Sci Technol 22: 787–796CrossRefGoogle Scholar
  20. 20.
    Fernanded-Francos X, Rybak A, Sekula R, Ramis X, Ferrando F, Okrasa L, Serra A (2013) J Appl Polym Sci 128:4001–4013CrossRefGoogle Scholar
  21. 21.
    Sroka J, Rybak A, Sekula R, Sitarz M (2016) J Polym Environ 24: 298–308CrossRefGoogle Scholar
  22. 22.
    International Standard ISO 13586:2000(E), 2000Google Scholar
  23. 23.
    European Standard EN (1996) IS0 527-2Google Scholar
  24. 24.
    Saikia BJ, Parthasarathy G (2010) J Mod Phys 1: 206–210Google Scholar
  25. 25.
    Lubas M, Sitarz M, Nitkiewicz Z (2005) Proceedings of the 4th Youth Symposium on Experimental Solid Mechanics, Castrocaro Terme. ItalyGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Jolanta Sroka
    • 1
    Email author
  • Andrzej Rybak
    • 2
  • Robert Sekula
    • 2
  • Paulina Filipczak
    • 3
  • Marcin Kozanecki
    • 3
  • Maciej Sitarz
    • 1
  1. 1.Department of Silicate Chemistry and Macromolecular Compounds, Faculty of Materials Science and CeramicsAGH University of Science and TechnologyKrakowPoland
  2. 2.ABB Corporate Research CenterKrakowPoland
  3. 3.Department of Molecular Physics, Faculty of ChemistryLodz University of TechnologyLodzPoland

Personalised recommendations