Journal of Polymers and the Environment

, Volume 25, Issue 3, pp 606–616 | Cite as

Biodegradation of Natural Rubber and Natural Rubber Products by Streptomyces sp. Strain CFMR 7

  • Jayaram Nanthini
  • Kumar SudeshEmail author
Original Paper


The rubber degrading activity of Streptomyces sp. CFMR 7 whose whole genome sequence was recently determined was tested with non-vulcanized fresh latex and common vulcanized rubber products such as latex glove, latex condom and latex car tyre. The degradation activity was unequivocally demonstrated by scanning electron microscopy with respect to microbial colonization efficiency, disintegration of rubber material and biofilm formation after 3, 6 and 9 months of inoculation. Fourier transform infrared spectroscopy comprising the attenuated total reflectance analysis on these inoculated products revealed insights into the biodegradation mechanism of this strain whereby, a decrease in the number of cis -1,4 double bonds in the polyisoprene chain, the appearance of ketone and aldehyde groups formation indicating an oxidative attack at the double bond of rubber hydrocarbon. In the presence of strain Streptomyces sp. CFMR 7, gel permeation chromatography analysis revealed a significant shift of the molecular weight distribution to lower values. Clear decrease in the molecular weight was observed over 3, 6 and 9 months of cultivation on fresh latex samples compared to other vulcanized products. No shift in the molecular weight distribution was observed for non-inoculated control. These results clearly showed that Streptomyces sp. CFMR 7 was able to cleave the carbon backbone of poly (cis -1,4-isoprene). Although this strain was able to degrade both non-vulcanized and vulcanized rubber products, faster degradation was obtained with natural rubber and rubber products with low complexity.


Streptomyces sp. CFMR 7 Rubber Degradation cis-1,4 double bonds 



This study was supported by USM Research University Grant (1001/PBIOLOGI/815069). Nanthini J is grateful to MyBrain15 program by the Ministry of Education Malaysia (MOE) for providing fellowship.


  1. 1.
    Bredberg K, Christiansson M, Stenberg B, Holst O (2001) Biotechnological processes for recycling of rubber products. In: Koyama T, Steinbüchel A (eds) Biopolymers. Wiley, Germany, pp 361–375Google Scholar
  2. 2.
    Gronover CS, Wahler D, Prüfer D (2011) Natural rubber biosynthesis and physic-chemical studies on plant derived latex. In: Elnashar M (ed) Biotechnology of Biopolymers. Intech Open Acess Publisher, Croatia, pp 75–88Google Scholar
  3. 3.
    Van BJB, Poirier Y (2007) Trends Biotechnol 25(11):522–529CrossRefGoogle Scholar
  4. 4.
    Yikmis M, Steinbüchel A (2012) Appl Environ Microbiol 78(13):4543–4551CrossRefGoogle Scholar
  5. 5.
    Malaysian Rubber Board. ‘Natural Rubber Statistics, (2015)’. Retrieved 6 May 2016
  6. 6.
    Rook JJ (1955) Appl Microbiol 3(5):302Google Scholar
  7. 7.
    Rose K, Steinbüchel A (2005) Appl Environ Microbiol 71(6):2803–2812CrossRefGoogle Scholar
  8. 8.
    Tsuchii A, Suzuki T, Takeda K (1985) Appl Environ Microbiol 50(4):965–970Google Scholar
  9. 9.
    Heisey RM, Papadatos S (1995) Appl Environ Microbiol 61(8):3092–3097Google Scholar
  10. 10.
    Jendrossek D, Tomasi G, Kroppenstedt RM (1997) FEMS Microbiol Lett 150(2):179–188CrossRefGoogle Scholar
  11. 11.
    Berekaa MM (2006) Biotechnology 5(3):234–239CrossRefGoogle Scholar
  12. 12.
    Imai S, Ichikawa K, Muramatsu Y, Kasai D, Masai E, Fukuda M (2011) Enzyme Microb Technol 49(6):526–531CrossRefGoogle Scholar
  13. 13.
    Linos A, Berekaa MM, Steinbüchel A, Kim KK, Sproer C, Kroppenstedt RM (2002) Int J Syst Bacteriol 52(4):1133–1139Google Scholar
  14. 14.
    Kieser T (2001) Practical Streptomyces genetics (Ch1) John Innes Foundation. Norwich, UKGoogle Scholar
  15. 15.
    Chia KH, Nanthini J, Thottathil GP, Najimudin N, Haris MRHM, Sudesh K (2014) Polym Degrad 109:354–361CrossRefGoogle Scholar
  16. 16.
    Nanthini J, Chia KH, Thottathil GP, Taylor TD, Kondo S, Najimudin N, Baybayan P, Singh S, Sudesh K (2015) J Biotechnol 214:47–48CrossRefGoogle Scholar
  17. 17.
    Berekaa MM, Linos A, Reichelt R, Keller U, Steinbüchel A (2000) FEMS Microbiol Lett 184(2):199–206CrossRefGoogle Scholar
  18. 18.
    Linos A, Berekaa MM, Reichelt R, Keller U, Schmitt J, Flemming HC, Kroppenstedt RM, Steinbüchel A (2000) Appl Environ Microbiol 66(4):1639–1645CrossRefGoogle Scholar
  19. 19.
    Bode HB, Zeeck A, Plückhahn K, Jendrossek D (2000) Appl Environ Microbiol 2000:3680–3685CrossRefGoogle Scholar
  20. 20.
    Evans A, Evans R (2006) The composition of a tyre: typical components. The Waste and Resources Action Programme, UKGoogle Scholar
  21. 21.
    Rubbercare Protection Products Sdn Bhd (2016) Glove manufacturing process. Retrieved 29 Feb 2016
  22. 22.
    Ritex (2016) Condom production: giving a form to natural rubber latex. Retrieved 29 Feb 2016
  23. 23.
    Manteca A, Sanchez J (2010) Curr Res Technol Educ Top Appl Microbiol Microb Biotechnol 1:560–566Google Scholar
  24. 24.
    Flemming HC (1998) Polym Degrad Stab 59(1):309–315CrossRefGoogle Scholar
  25. 25.
    Vupputuri S, Fathepure BZ, Wilber GG, Sudoi E, Nasrazadani S, Ley MT, Ramsey JD (2015) Int Biodeterior Biodegrad 97:128–134CrossRefGoogle Scholar
  26. 26.
    Shah AA, Hasan F, Shah Z, Kanwal N, Zeb S (2013) Int Biodeterior Biodegrad 83:145–157CrossRefGoogle Scholar
  27. 27.
    Yikmis M, Steinbüchel A (2012) Microbiol Open 1(1):13–24CrossRefGoogle Scholar
  28. 28.
    Bode HB, Kerkhoff K, Jendrossek D (2001) Biomacromolecules 2(1):295–303CrossRefGoogle Scholar
  29. 29.
    Hiessl S, Böse D, Oetermann S, Eggers J, Pietruszka J, Steinbüchel A (2014) Appl Environ Microbiol 80(17):5231–5240CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Biological SciencesUniversiti Sains MalaysiaPenangMalaysia
  2. 2.Centre for Chemical BiologyUniversiti Sains MalaysiaPenangMalaysia

Personalised recommendations