Journal of Polymers and the Environment

, Volume 24, Issue 1, pp 12–22 | Cite as

Influence of Processing Conditions on Morphological, Thermal and Degradative Behavior of Nanocomposites Based on Plasticized Poly(3-hydroxybutyrate) and Organo-Modified Clay

  • D. Puglia
  • E. Fortunati
  • D. A. D’Amico
  • V. Miri
  • G. Stoclet
  • L. B. Manfredi
  • V. P. Cyras
  • J. M. Kenny
Original Paper

Abstract

The effect of processing conditions (casting and extrusion) and plasticization on the disintegrability in compost of organically modified clay poly(3-hydroxybutyrate) nanocomposites was studied. Tributylhexadecylphosphonium bromide (TBHP) was used as organic modifier. As revealed by WAXS and TEM observations, intercalated nanobiocomposites with clay stacks and some individually dispersed platelets were obtained. The melting temperature of the neat PHB diminished with the addition of plasticizer, thus broadening the processing window. Biodegradation test revealed that while the clay slows down the degradation rate, the plasticizer increases the degradation of the samples, reaching a similar final percentage of disintegrability when both plasticizer and clay were added in the formulation.

Keywords

Poly(3-hydroxybutyrate) Nanoclay Plasticizer Nanocomposites Disintegrability compost 

Notes

Acknowledgments

The financial support of the National Research Council (CONICET); PIP 0014 and PIP 0527; the National Agency for the Promotion of Science and Technology (ANPCyT); PICT 1983; and the University of Mar del Plata, Argentina, is gratefully acknowledged.

References

  1. 1.
    Lenz RW, Marchessault RH (2005) Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology. Biomacromolecules 6(1):1–8. doi: 10.1021/bm049700c CrossRefGoogle Scholar
  2. 2.
    Peña C, Castillo T, García A, Millán M, Segura D (2014) Biotechnological strategies to improve production of microbial poly-(3-hydroxybutyrate): a review of recent research work. Microb Biotechnol 7:278–293. doi: 10.1111/1751-7915.12129 CrossRefGoogle Scholar
  3. 3.
    Chen GQ, Wu Q (2005) The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26(33):6565–6578CrossRefGoogle Scholar
  4. 4.
    Snell K, Peoples O (2009) PHA bioplastic: a value-added coproduct for biomass biorefineries. Biofuels Bioprod Biorefin 3:456–467CrossRefGoogle Scholar
  5. 5.
    Baltieri RC, Innocentini Mei LH, Bartoli J (2003) Study of the influence of plasticizers on the thermal and mechanical properties of poly(3-hydroxybutyrate) compounds. Macromol Symp 197:33–44. doi: 10.1002/masy.200350704 CrossRefGoogle Scholar
  6. 6.
    Volova TG (2004) Polyhydroxyalkanoates plastic material of the 21st century. Nova science publishers Inc, Hauppauge, New YorkGoogle Scholar
  7. 7.
    Mekonnen T, Mussone P, Khalil H, Bressler D (2013) Progress in bio-based plastics and plasticizing modifications. J Mater Chem A 1:13379–13398CrossRefGoogle Scholar
  8. 8.
    Yu L, Dean K, Li L (2006) Polymer blends and composites from renewable resources. Prog Polym Sci 31:576–602CrossRefGoogle Scholar
  9. 9.
    Erceg M, Kovacic T, Klaric I (2005) Thermal degradation of poly(3-hydroxybutyrate) plasticized with acetyl tributyl citrate. Polym Degrad Stab 90:313–318CrossRefGoogle Scholar
  10. 10.
    Rahman M, Brazel SC (2004) The plasticizer market: an assessment of traditional plasticizers and research trends to meet new challenges. Prog Polym Sci 29:1223–1248CrossRefGoogle Scholar
  11. 11.
    Branciforti MC, Silveira Corrêa MC, Pollet E, Marcondes Agnelli JA, de Paula Nascente PA, Avérous L (2013) Crystallinity study of nano-biocomposites based on plasticized poly(hydroxybutyrate-co-hydroxyvalerate) with organo-modified montmorillonite. Polym Test 32(7):1253–1260CrossRefGoogle Scholar
  12. 12.
    Labrecque LV, Kumar RA, Dave V, Gross RA, McCarthy SP (1997) Citrate esters as plasticizers for poly(lactic acid). J Appl Polym Sci 66:1507–1513CrossRefGoogle Scholar
  13. 13.
    Ghiya VP, Dave V, Gross RA, McCarthy SP (1996) Biodegradability of cellulose acetate plasticized with citrate esters. Pure Appl Chem A 33(5):627–638Google Scholar
  14. 14.
    Arrieta MP, Castro-López M, Rayón E, Barral-Losada LF, López-Vilariño JM, López J, González-Rodríguez MV (2014) Plasticized poly(lactic acid)-poly(hydroxybutyrate) (PLA-PHB) blends incorporated with catechin intended for active food-packaging applications. J Agric Food Chem 62(41):10170–10180CrossRefGoogle Scholar
  15. 15.
    Abdelwahab MA, Flynn A, Chiou BS, Imam S, Orts W, Chiellini E (2012) Thermal, mechanical and morphological characterization of plasticized PLA–PHB blends. Polym Degrad Stab 97(2):1822–1828CrossRefGoogle Scholar
  16. 16.
    Vieira MGA, da Silva MA, dos Santos LO, Beppu MM (2011) Natural-based plasticizers and biopolymer films: a review. Eur Polym J 47(3):254–263CrossRefGoogle Scholar
  17. 17.
    Hablot E, Bordes P, Pollet E, Averous L (2008) Thermal and thermo-mechanical degradation of poly(3-hydroxybutyrate)-based multiphase systems. Polym Degrad Stab 93:413–421CrossRefGoogle Scholar
  18. 18.
    Puglia D, Fortunati E, D’Amico DA, Manfredi LB, Cyras VP, Kenny JM (2014) Influence of organically modified clays on the properties and disintegrability in compost of solution cast poly(3-hydroxybutyrate) films. Polym Degrad Stab 99:127–135CrossRefGoogle Scholar
  19. 19.
    Yoshie N, Nakasato K, Fujiwara M, Kasuya K, Abe H, Doi Y, Inoue Y (2000) Effect of low molecular weight additives on enzymatic degradation of poly(3-hydroxybutyrate). Polymer 41(9):3227–3234CrossRefGoogle Scholar
  20. 20.
    Corrêa MCS, Branciforti MC, Pollet E, Agnelli JAM, Nascente PAP, Avérous L (2012) Elaboration and characterization of nano-biocomposites based on plasticized poly(hydroxybutyrate-co-hydroxyvalerate) with organo-Modified montmorillonite. J Polym Environ 20:283–290. doi: 10.1007/s10924-011-0379-0 CrossRefGoogle Scholar
  21. 21.
    D’Amico DA, Cyras VP, Manfredi LB (2014) Non-isothermal crystallization kinetics from the melt of nanocomposites based on poly(3-hydroxybutyrate) and modified clays. Thermochim Acta 594:80–88CrossRefGoogle Scholar
  22. 22.
    Chiu HJ (2005) Segregation morphology of poly(3-hydroxybutyrate)/poly(vinyl acetate) and poly(3-hydroxybutyrate-co-10 % 3-hydroxyvalerate)/poly(vinylacetate) blends as studied via small angle X-ray scattering. Polymer 46:3906–3913CrossRefGoogle Scholar
  23. 23.
    Maiti P, Batt CA, Giannelis EP (2007) New biodegradable polyhydroxybutyrate/layered silicate nanocomposites. Biomacromolecules 8:3393–3400CrossRefGoogle Scholar
  24. 24.
    El-Hadi AM (2014) Investigation of the effect of nano-clay type on the non-isothermal crystallization kinetics and morphology of poly(3(R)-hydroxybutyrate) PHB/clay nanocomposites. Polym Bull 71(6):1449–1470. doi: 10.1007/s00289-014-1135-0 CrossRefGoogle Scholar
  25. 25.
    Kurusu RS, Siliki CA, David É, Raymonde Demarquette N, Gauthier C, Chenal J-M (2015) Incorporation of plasticizers in sugarcane-basedpoly(3-hydroxybutyrate)(PHB): changes in microstructure and properties through ageing and annealing. Ind Crops Prod. doi: 10.1016/j.indcrop.2014.12.040 Google Scholar
  26. 26.
    Erceg M, Kovacic T, Klaric I (2005) Thermal degradation of poly(3hydroxybutyrate) with acetyl trybutyl citrate. Polym Degrad Stab 90:313–318CrossRefGoogle Scholar
  27. 27.
    Audic J, Lemiègre L, Corre Y (2014) Thermal and mechanical properties of a polyhydroxyalkanoate plasticized with biobased epoxidized broccoli oil. J Appl Polym Sci. doi: 10.1002/app.3998 Google Scholar
  28. 28.
    Cyras VP, Manfredi LB, Ton-That M-T, Vázquez A (2008) Physical and mechanical properties of thermoplastic starch/montmorillonite nanocomposite films. Carbohydr Polym 73:55–63CrossRefGoogle Scholar
  29. 29.
    Duquesne S, Jama C, Le Bras M, Delobel R, Recourt P, Gloague JM (2003) Elaboration of EVA–nanoclay systems—characterization, thermal behaviour and fire performance. Compos Sci Technol 63:1141–1148CrossRefGoogle Scholar
  30. 30.
    Chen JH, Tsai FC, Nien YH, Yeh P-H (1984) Isothermal crystallization of isotactic polypropylene blended with low molecular weight atactic polypropylene. Part I. Thermal properties and morphology development. Polymer 46:5680–5688CrossRefGoogle Scholar
  31. 31.
    Grassie N, Murria EJ, Holmes PA (1984) The thermal degradation of poly(-(d)-β-hydroxybutyric acid): part 2—changes in molecular weight. Polym Degrad Stab 6:95–103CrossRefGoogle Scholar
  32. 32.
    Grassie N, Murray EJ, Holmes PA (1984) The thermal degradation of poly(-(d)-β-hydroxybutyric acid): part 1—identification and quantitative analysis of products. Polym Degrad Stab 6:47–61CrossRefGoogle Scholar
  33. 33.
    Li S, Girard A, Garreau H, Vert M (2001) Enzymatic degradation of polylactide stereocopolymers with predominant d-lactyl contents. Polym Degrad Stab 71:61–67CrossRefGoogle Scholar
  34. 34.
    Calvão PS, Chenal J-M, Gauthier C, Demarquette NR, Bogner A, Cavaille JY (2012) Understanding the mechanical and biodegradation behaviour of poly(hydroxybutyrate)/rubber blends in relation to their morphology. Polym Int 61:434–441. doi: 10.1002/pi.3211 CrossRefGoogle Scholar
  35. 35.
    Arrieta MP, López J, Rayón E, Jiménez A (2014) Disintegrability under composting conditions of plasticized PLA–PHB blends. Polym Degrad Stab 108:307–318CrossRefGoogle Scholar
  36. 36.
    Wang S, Song C, Chen GT, Guo T, Liu J, Zhang B, Takeuchicet S (2005) Characteristics and biodegradation properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/organophilic montmorillonite (PHBV/OMMT) nanocomposite. Polym Degrad Stab 87:69–76CrossRefGoogle Scholar
  37. 37.
    Wu T, Xie AG, Tan SZ, Cai X (2011) Antimicrobial effects of quaternary phosphonium salt intercalated clay minerals on Escherichia coli and Staphylococci aureus. Colloids Surf B Biointerfaces. 86(1):232–236. doi: 10.1016/j.colsurfb.2011.04.009 CrossRefGoogle Scholar
  38. 38.
    Yang Y, Shi Q, Feng J, Shu X, Feng J (2014) Preparation and antibacterial properties of an activated carbon sphere–quaternary phosphonium salt composite. RSC Adv 4:50708–50712. doi: 10.1039/C4RA07282K CrossRefGoogle Scholar
  39. 39.
    Hoglund A, Hakkarainen M, Albertsson A-C (2010) Migration and hydrolysis of hydrophobic polylactide plasticizer. Biomacromolecules 11:277–283CrossRefGoogle Scholar
  40. 40.
    Bitinis N, Fortunati E, Verdejo R, Armentano I, Torre L, Kenny JM, López-Manchado MA (2014) Thermal and bio-disintegration properties of poly(lactic acid)/natural rubber/organoclay nanocomposites. Appl Clay Sci 93–94:78–84CrossRefGoogle Scholar
  41. 41.
    Correa MCS, Rezende ML, Rosa DS, Agnelli JAM, Nascente PAP (2008) Surface composition and morphology of poly(3-hydroxybutyrate) exposed to biodegradation. Polym Test 27(4):447–452CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • D. Puglia
    • 1
  • E. Fortunati
    • 1
  • D. A. D’Amico
    • 2
  • V. Miri
    • 3
  • G. Stoclet
    • 3
  • L. B. Manfredi
    • 2
  • V. P. Cyras
    • 2
  • J. M. Kenny
    • 1
  1. 1.Civil and Environmental Engineering DepartmentUniversity of PerugiaTerniItaly
  2. 2.Facultad de Ingeniería, INTEMA, Instituto de Investigaciones en Ciencia y Tecnología de MaterialesUniversidad Nacional de Mar del PlataMar del PlataArgentina
  3. 3.Unité Matériaux et Transformations, CNRS, UMR 8207Université Lille 1Villeneuve d’ AscqFrance

Personalised recommendations