Journal of Polymers and the Environment

, Volume 23, Issue 4, pp 493–505 | Cite as

Natural Degradation and Biodegradation of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) in Liquid and Solid Marine Environments

  • Morgan Deroiné
  • Guy César
  • Antoine Le Duigou
  • Peter Davies
  • Stéphane Bruzaud
Original Paper


In this study, natural degradation and biodegradation of poly(3-hydroxybuyrate-co-3-hydroxyvalerate) (PHBV) films were followed in different marine environments. First of all, ageing of PHBV films was investigated in natural seawater for 180 days and degradation was followed by means of weight loss measurements, scanning electron microscopy (SEM), differential scanning calorimetry and steric exclusion chromatography. In a second part, biodegradation tests were performed on PHBV powder, by following carbon dioxide (CO2) release, to highlight the PHBV bioassimilation of marine microorganisms. Three different marine environments were considered for biodegradation tests: a solid inoculum with foreshore sand, a solid–liquid inoculum with sand and seawater and a liquid inoculum with seawater. In the latter, a biofilm was added to study the influence of microorganisms on biodegradation kinetics. The films aged under natural conditions show a large loss of weight after 180 days in immersion, around 36 %, confirmed by SEM pictures which show an increase of the surface erosion and a decrease of the sample thickness. Microorganisms’ attack occurred as suggested by CO2 release during biodegradation tests, whatever the environment studied.


PHBV Natural ageing Degradation Biodegradation Seawater 



The authors thank the SERPBIO association for financial support and the Aquastream company for the donation of the biofilm collected on the breeding fish tank. The authors are also pleased to express their grateful acknowledgements to Anthony Magueresse, Dr. Patrick Loulergue and Dr. Jean-Luc Audic for their help in the experimental work, Yves-Marie Corre and Pierre-Yves Le Gac (IFREMER) for helpful comments.


  1. 1.
    Pichel WG, Churnside JH, Veenstra TS, Foley DG, Friedman KS, Brainard RE (2007) Marine debris collects within the North Pacific Subtropical Convergence Zone. Mar Pollut Bull 54:1207–1211. doi: 10.1016/j.marpolbul.2007.04.010 CrossRefGoogle Scholar
  2. 2.
    Barnes DKA, Galgani F, Thompson RC, Barlaz M (2009) Accumulation and fragmentation of plastic debris in global environments. Philos Trans R Soc B Biol Sci 364:1985–1998. doi: 10.1098/rstb.2008.0205 CrossRefGoogle Scholar
  3. 3.
    Barnes DKA, Walters A, Gonçalves L (2010) Macroplastics at sea around Antarctica. Mar Environ Res 70:250–252. doi: 10.1016/j.marenvres.2010.05.006 CrossRefGoogle Scholar
  4. 4.
    Rios LM, Moore C, Jones PR (2007) Persistent organic pollutants carried by synthetic polymers in the ocean environment. Mar Pollut Bull 54:1230–1237. doi: 10.1016/j.marpolbul.2007.03.022 CrossRefGoogle Scholar
  5. 5.
    Ryan PG (2008) Seabirds indicate changes in the composition of plastic litter in the Atlantic and south-western Indian Oceans. Mar Pollut Bull 56:1406–1409. doi: 10.1016/j.marpolbul.2008.05.004 CrossRefGoogle Scholar
  6. 6.
    Avery-Gomm S, O’Hara PD, Kleine L, Bowes V, Wilson LK, Barry KL (2012) Northern fulmars as biological monitors of trends of plastic pollution in the eastern North Pacific. Mar Pollut Bull 64:1776–1781. doi: 10.1016/j.marpolbul.2012.04.017 CrossRefGoogle Scholar
  7. 7.
    Thompson RC, Olsen Y, Mitchell RP, Davis A, Rowland SJ, John AWG et al (2004) Lost at sea: where is all the plastic? Science 304:838. doi: 10.1126/science.1094559 CrossRefGoogle Scholar
  8. 8.
    Andrady AL (2011) Microplastics in the marine environment. Mar Pollut Bull 62:1596–1605. doi: 10.1016/j.marpolbul.2011.05.030 CrossRefGoogle Scholar
  9. 9.
    Alexander M (1981) Biodegradation of chemicals of environmental concern. Science 211:132–138. doi: 10.1126/science.7444456 CrossRefGoogle Scholar
  10. 10.
    Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25:1503–1555. doi: 10.1016/S0079-6700(00)00035-6 CrossRefGoogle Scholar
  11. 11.
    Avella M, Rota GL, Martuscelli E, Raimo M, Sadocco P, Elegir G et al (2000) Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and wheat straw fibre composites: thermal, mechanical properties and biodegradation behaviour. J Mater Sci 35:829–836. doi: 10.1023/A:1004773603516 CrossRefGoogle Scholar
  12. 12.
    Pagga U, Beimborn DB, Boelens J, De Wilde B (1995) Determination of the aerobic biodegradability of polymeric material in a laboratory controlled composting test. Chemosphere 31:4475–4487. doi: 10.1016/0045-6535(95)00326-4 CrossRefGoogle Scholar
  13. 13.
    Saadi Z, Cesar G, Bewa H, Benguigui L (2013) Fungal degradation of poly(butylene adipate-co-terephthalate) in soil and in compost. J Polym Environ 21:893–901. doi: 10.1007/s10924-013-0582-2 CrossRefGoogle Scholar
  14. 14.
    Mergaert J, Anderson C, Wouters A, Swings J (1994) Microbial degradation of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in compost. J Polym Environ 2:177–183. doi: 10.1007/BF02067443 CrossRefGoogle Scholar
  15. 15.
    Weng Y-X, Wang Y, Wang X-L, Wang Y-Z (2010) Biodegradation behavior of PHBV films in a pilot-scale composting condition. Polym Test 29:579–587. doi: 10.1016/j.polymertesting.2010.04.002 CrossRefGoogle Scholar
  16. 16.
    Sang B-I, Hori K, Tanji Y, Unno H (2002) Fungal contribution to in situ biodegradation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) film in soil. Appl Microbiol Biotechnol 58:241–247. doi: 10.1007/s00253-001-0884-5 CrossRefGoogle Scholar
  17. 17.
    Batista KC, Silva DAK, Coelho LAF, Pezzin SH (2010) Pezzin APT (2010) Soil biodegradation of PHBV/peach palm particles biocomposites. J Polym Environ 18:346–354. doi: 10.1007/s10924-010-0238-4 CrossRefGoogle Scholar
  18. 18.
    Doi Y, Kasuya K, Abe H, Koyama N, Shin-ichi I, Koichi T et al (1996) Evaluation of biodegradabilities of biosynthetic and chemosynthetic polyesters in river water. Polym Degrad Stab 51:281–286. doi: 10.1016/0141-3910(95)00178-6 CrossRefGoogle Scholar
  19. 19.
    Kasuya K, Takagi K, Ishiwatari S, Yoshida Y, Doi Y (1998) Biodegradabilities of various aliphatic polyesters in natural waters. Polym Degrad Stab 59:327–332. doi: 10.1016/S0141-3910(97)00155-9 CrossRefGoogle Scholar
  20. 20.
    Deroiné M, Le Duigou A, Corre Y-M, Le Gac P-Y, Davies P, César G et al (2014) Seawater accelerated ageing of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Polym Degrad Stab 105:237–247. doi: 10.1016/j.polymdegradstab.2014.04.026 CrossRefGoogle Scholar
  21. 21.
    Corre Y-M, Bruzaud S, Audic J-L, Grohens Y (2012) Morphology and functional properties of commercial polyhydroxyalkanoates: a comprehensive and comparative study. Polym Test 31:226–235. doi: 10.1016/j.polymertesting.2011.11.002 CrossRefGoogle Scholar
  22. 22.
    AFNOR (2005) NF U52-001. Biodegradable materials for use in agriculture and horticulture—Mulching products: requirements and test methodsGoogle Scholar
  23. 23.
    Barham PJ, Keller A, Otun EL, Holmes PA (1984) Crystallization and morphology of a bacterial thermoplastic: poly-3-hydroxybutyrate. J Mater Sci 19:2781–2794. doi: 10.1007/BF01026954 CrossRefGoogle Scholar
  24. 24.
    Tsuji H, Suzuyoshi K (2002) Environmental degradation of biodegradable polyesters 2: poly(ε-caprolactone), poly[(R)-3-hydroxybutyrate], and poly(l-lactide) films in natural dynamic seawater. Polym Degrad Stab 75:357–365. doi: 10.1016/S0141-3910(01)00239-7 CrossRefGoogle Scholar
  25. 25.
    Rutkowska M, Krasowska K, Heimowska A, Adamus G, Sobota M, Musioł M et al (2008) Environmental degradation of blends of atactic poly[(R, S)-3-hydroxybutyrate] with natural PHBV in Baltic sea water and compost with activated sludge. J Polym Environ 16:183–191. doi: 10.1007/s10924-008-0100-0 CrossRefGoogle Scholar
  26. 26.
    Volova TG, Boyandin AN, Vasiliev AD, Karpov VA, Prudnikova SV, Mishukova OV et al (2010) Biodegradation of polyhydroxyalkanoates (PHAs) in tropical coastal waters and identification of PHA-degrading bacteria. Polym Degrad Stab 95:2350–2359. doi: 10.1016/j.polymdegradstab.2010.08.023 CrossRefGoogle Scholar
  27. 27.
    Luo YB, Wang X-L, Wang Y-Z (2012) Effect of TiO2 nanoparticles on the long-term hydrolytic degradation behavior of PLA. Polym Degrad Stab 97:721–728. doi: 10.1016/j.polymdegradstab.2012.02.011 CrossRefGoogle Scholar
  28. 28.
    Deroiné M, Le Duigou A, Corre Y-M, Le Gac P-Y, Davies P, César G et al (2014) Accelerated ageing of polylactide in aqueous environments: comparative study between distilled water and seawater. Polym Degrad Stab 108:319–329. doi: 10.1016/j.polymdegradstab.2014.01.020 CrossRefGoogle Scholar
  29. 29.
    Kumagai Y, Kanesawa Y, Doi Y (1992) Enzymatic degradation of microbial poly(3-hydroxybutyrate) films. Makromol Chem 193:53–57. doi: 10.1002/macp.1992.021930105 CrossRefGoogle Scholar
  30. 30.
    Sudesh K, Abe H (2010) Practical guide to microbial polyhydroxyalkanoates. iSmithers Rapra PublishingGoogle Scholar
  31. 31.
    Kim DY, Rhee YH (2003) Biodegradation of microbial and synthetic polyesters by fungi. Appl Microbiol Biotechnol 61:300–308. doi: 10.1007/s00253-002-1205-3 CrossRefGoogle Scholar
  32. 32.
    Mergaert J, Swings J (1996) Biodiversity of microorganisms that degrade bacterial and synthetic polyesters. J Ind Microbiol 17:463–469. doi: 10.1007/BF01574777 CrossRefGoogle Scholar
  33. 33.
    Domenek S, Feuilloley P, Gratraud J, Morel M-H, Guilbert S (2004) Biodegradability of wheat gluten based bioplastics. Chemosphere 54:551–559. doi: 10.1016/S0045-6535(03)00760-4 CrossRefGoogle Scholar
  34. 34.
    Innocenti FD (2012) Laboratory test methods to determine the degradation of plastics in marine environmental conditions. Front Microbiotechnol Ecotoxicol Bioremediation 3:225. doi: 10.3389/fmicb.2012.00225 Google Scholar
  35. 35.
    Numata K, Abe H, Doi Y (2008) Enzymatic processes for biodegradation of poly(hydroxyalkanoate)s crystals. Can J Chem 86:471–483. doi: 10.1139/v08-004 CrossRefGoogle Scholar
  36. 36.
    Taguchi S, Iwata T, Abe H, Doi Y (2012) 9.09: poly(hydroxyalkanoate)s. In: Matyjaszewski K, Möller M (eds) Polymer science: a comprehensive reference. Elsevier, Amsterdam, pp 157–182CrossRefGoogle Scholar
  37. 37.
    Mukai K, Yamada K, Doi Y (1993) Enzymatic degradation of poly(hydroxyalkanoates) by a marine bacterium. Polym Degrad Stab 41:85–91. doi: 10.1016/0141-3910(93)90066-R CrossRefGoogle Scholar
  38. 38.
    Deroiné M, Le Duigou A, Corre Y-M, Le Gac P-Y, Davies P, César G et al (2014) Accelerated ageing and lifetime prediction of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in distilled water. Polym Test 39:70–78. doi: 10.1016/j.polymertesting.2014.07.018 CrossRefGoogle Scholar
  39. 39.
    Hakkarainen M (2002) Aliphatic polyesters: abiotic and biotic degradation and degradation products: Degradable Aliphatic Polyester. Springer, Berlin, pp 113–138Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Morgan Deroiné
    • 1
    • 2
    • 3
  • Guy César
    • 2
  • Antoine Le Duigou
    • 1
  • Peter Davies
    • 3
  • Stéphane Bruzaud
    • 1
  1. 1.Université de Bretagne-Sud, EA 4250, LIMATBLorientFrance
  2. 2.SERPBIOUniversité de Bretagne-SudLorientFrance
  3. 3.IFREMER, Marine Structures GroupCentre de BretagnePlouzanéFrance

Personalised recommendations