Skip to main content
Log in

Biodegradable Blends from Corn Gluten Meal and Poly(butylene adipate-co-terephthalate) (PBAT): Studies on the Influence of Plasticization and Destructurization on Rheology, Tensile Properties and Interfacial Interactions

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Melt extrusion was used to obtain thermoplastic corn gluten meal (tCGM) blends from plasticized corn gluten meal (pCGM) and poly(butylene adipate-co-terephthalate) (PBAT). Dynamic rheological tests, morphology and spectroscopy were employed to understand the effect of the plasticization and destructurization of corn gluten meal (CGM) on tCGM blends. Rheological data showed a plateau in the low frequencies for tCGM blends demonstrating network formation which responds elastically over long timescales. Also, complex viscosity data showed the existing of shear thinning for PBAT and PBAT–CGM blend. Furthermore, rheology and morphology showed the synergistic influence of plasticization and destructuralization of CGM on the phase structure development of the blends. In addition, it was found for unmodified CGM–PBAT blend there was significant frequency dependence for G′ indicating it just acted as filler for PBAT matrix. FTIR studies showed that the urea has helped in unfolding the corn protein and facilitated hydrogen bonding interactions with PBAT. Tensile properties showed an improvement in tCGM blends when compared unmodified CGM blend. Tensile strength of tCGM blends was almost same as that of the neat PBAT matrix. Percent elongation, a strong reflection of the state of interface in the blends has showed higher values, indicating strong interactions between the PBAT and pCGM in the blend system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Reference

  1. Paetau I, Chen CZ, Jane J (1821) Ind Eng Chem Res 1994:33

    Google Scholar 

  2. Manamperi WAR, Chang SKC, Ulven CA, Pryor SW (2010) J Am Oil Chem Soc 87:909

    Article  CAS  Google Scholar 

  3. Di Gioia L, Guilbert S (1999) J Agric Food Chem 47:1254

    Article  Google Scholar 

  4. Verbeek CJR, van den Berg LE (2011) J Polym Environ 19:1

    Article  CAS  Google Scholar 

  5. Graiver D, Waikul L, Berger C, Narayan R (2004) J Appl Polym Sci 92:3231

    Article  CAS  Google Scholar 

  6. Reddy MM, Mohanty AK, Misra M (2012) J Mater Sci 47:2591

    Article  CAS  Google Scholar 

  7. Shukla R, Cheryan M (2001) Ind Crops Prod 13:171

    Article  CAS  Google Scholar 

  8. Wang Y, Padua GW (2004) J Agric Food Chem 52:3100

    Article  CAS  Google Scholar 

  9. Pickering KL, Verbeek CJR, Viljoen C (2012) J Polym Environ 20:335

    Article  CAS  Google Scholar 

  10. Verbeek CJR, Van Den Berg LE (2010) Macromol Mater Eng 295:10

    Article  CAS  Google Scholar 

  11. Reddy M, Mohanty AK, Misra M (2010) J Biobased Mater Bioenerg 4:298

    Article  CAS  Google Scholar 

  12. De Graaf LA (2000) J Biotechnol 79:299

    Article  Google Scholar 

  13. Di Gioia L, Cuq B, Guilbert S (1999) Macromol Symp 144:365

    Article  Google Scholar 

  14. Di Gioia L, Cuq B, Guilbert S (1998) Cereal Chem 75:514

    Article  Google Scholar 

  15. Aithani D, Mohanty AK (2006) Ind Eng Chem Res 45:6147

    Article  CAS  Google Scholar 

  16. Chen F, Zhang J (2010) ACS Appl Mater Interfaces 2:3324

    Article  CAS  Google Scholar 

  17. Mannheim A, Cheryan M (1992) J Am Oil Chem Soc 69:1163

    Article  CAS  Google Scholar 

  18. Krimm S, Bandekar J (1986) Vibrational spectroscopy and conformation of peptides and proteins. In: Anfinsen CB, Edsall JT, Richards FM (eds) Adv Protein Chem. Academic, Salt Lake City

    Google Scholar 

  19. Yue H, Cui Y, Shuttleworth PS, Clark J (2009) Green Chem 2009:14

    Google Scholar 

  20. Srisa-Ard M, Baimark Y, Srisuwan Y (2008) J Appl Sci 8:3518

    Article  CAS  Google Scholar 

  21. Utracki LA (1989) Polymer alloys and blends: thermodynamics and rheology. Hanser Gardner Publications, New York, p 356

  22. Miao D, Qiang Z, Mei YH (2003) Nihon Reoroji Gakkaishi 31:305

    Article  Google Scholar 

  23. Zheng Q, Cao Y, Du M (1813) J Mater Sci 2004:39

    Google Scholar 

  24. Chen F, Zhang J (2009) Polymer 50:3770

    Article  CAS  Google Scholar 

  25. Shenoy AV (1999) Rheology of filled polymer systems. Berlin, Springer

    Book  Google Scholar 

  26. Utracki L (1987) Carl Hanser Verlag. Curr Top Polym Sci 2:7

    Google Scholar 

  27. Kota AK, Cipriano BH, Duesterberg MK, Gershon AL, Powell D, Raghavan SR, Bruck HA (2007) Macromolecules 40:7400

    Article  CAS  Google Scholar 

  28. Winter H (1987) Polym Eng Sci 27:1698

    Article  CAS  Google Scholar 

  29. Thomas S, Groeninckx G (1999) Polymer 40:5799

    Article  CAS  Google Scholar 

  30. Everaert V, Aerts L, Groeninckx G (1999) Polymer 40:6627

    Article  CAS  Google Scholar 

  31. Rodriguez-Gonzalez F, Ramsay B, Favis B (2003) Polymer 44:1517

    Article  CAS  Google Scholar 

  32. Danesi S, Porter RS (1978) Polymer 19:448

    Article  CAS  Google Scholar 

  33. Reddy MM, Mohanty AK, Misra M (2012) Macromol Mater Eng 297:455

    Article  CAS  Google Scholar 

  34. Favis B, Chalifoux J (1988) Polymer 29:1761

    Article  CAS  Google Scholar 

  35. Favis B (2000) Polymer blends. Vol. 1: formulation. New York, Wiley

    Google Scholar 

  36. Tucker CL III, Moldenaers P (2002) Annu Rev Fluid Mech 34:177

    Article  Google Scholar 

  37. Dacko P, Kowalczuk M, Janeczek H, Sobota M (2006) Macromol Symp 239:209

    Article  CAS  Google Scholar 

  38. Quintens D, Groeninckx G, Guest M, Aerts L (1990) Polym Eng Sci 30:1474

    Article  CAS  Google Scholar 

  39. Huneault MA, Li H (2007) Polymer 48:270

    Article  CAS  Google Scholar 

  40. Li G, Favis BD (2010) Macromol Chem Phys 211:321

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is financially supported by the Ontario Ministry of Agriculture and Food and the Ministry of Rural Affairs (OMAF-MRA)/University of Guelph—Bioeconomy for Industrial Uses Research Program; OMAF-MRA New Directions and Alternative Renewable Fuels ‘Plus’ Research Program and Ontario research fund, research excellence, round-4 (ORF RE04) from Ontario ministry of economic development and innovation (MEDI).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manjusri Misra or Amar K. Mohanty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reddy, M.M., Misra, M. & Mohanty, A.K. Biodegradable Blends from Corn Gluten Meal and Poly(butylene adipate-co-terephthalate) (PBAT): Studies on the Influence of Plasticization and Destructurization on Rheology, Tensile Properties and Interfacial Interactions. J Polym Environ 22, 167–175 (2014). https://doi.org/10.1007/s10924-014-0640-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-014-0640-4

Keywords

Navigation