Advertisement

Journal of Polymers and the Environment

, Volume 21, Issue 4, pp 971–980 | Cite as

Ultrastructural, Morphological, and Antifungal Properties of Micro and Nanoparticles of Chitosan Crosslinked with Sodium Tripolyphosphate

  • Octavio Cota-Arriola
  • Mario Onofre Cortez-Rocha
  • Josafat Marina Ezquerra-Brauer
  • Jaime Lizardi-Mendoza
  • Armando Burgos-Hernández
  • Rosario Maribel Robles-Sánchez
  • Maribel Plascencia-Jatomea
Original Paper

Abstract

Recent studies have demonstrated the antibacterial effect of micro and nanoparticles of chitosan (CS) crosslinked with sodium tripolyphosphate (TPP), and incorporating metallic ions, bringing that the size, shape, and zeta potential are related to the antimicrobial potential. However, there are few studies on the antifungal activity and the effect of TPP on the antimicrobial potential. Micro and nanoparticles were prepared from CS by ionotropic gelation with TPP, and structurally characterized by transmission and scanning electron spectroscopy, and Fourier transformed infrared spectroscopy. Depending on the concentration of CS and TPP, spherical particles were obtained from 80 nm to 20 μm. Subsequently, particles were evaluated for their antifungal potential against Aspergillus parasiticus assessing radial growth, spore germination, and morphological changes. An increase in the antifungal potential compared with CS in solution was observed, inhibiting the development of the fungus causing clear morphological changes in both, hyphae and spores. Particle size and the availability of functional groups of CS/TPP (amino group and phosphate), suggest a possible synergistic effect between CS and TPP.

Keywords

Chitosan Antifungal activity Microparticles Nanoparticles Sodium tripolyphosphate 

Notes

Acknowledgments

The study was funded by the Mexican Council for Science and Technology (CONACyT) through Grants No. 58249 and No. 53493, and the graduate scholarship granted to M.Sc. Octavio Cota-Arriola.

References

  1. 1.
    Beaney P, Lizardi-Mendoza J, Healy M (2005) J Chem Technol Biotechnol 80:145–150CrossRefGoogle Scholar
  2. 2.
    Lárez-Velásquez C (2006) Av Quim 1:15–21Google Scholar
  3. 3.
    Honarkar H, Barikani M (2009) Monatsh Chem 140:1403–1420CrossRefGoogle Scholar
  4. 4.
    Il’ina AV, Varlamov VP, Yu AE, Orlov VN, Skryabin KG (2008) Chemistry 42:199–201Google Scholar
  5. 5.
    López-León T, Carvalho ELS, Seijo B, Ortega-Vinuesa JL, Bastos-González D (2005) J Colloid Interface Sci 283:344–351CrossRefGoogle Scholar
  6. 6.
    No HK, Meyers SP, Prinyawiwatkul W, Xu Z (2007) J Food Sci 72(5):87–100CrossRefGoogle Scholar
  7. 7.
    Rabea EI, Mohamed ET, Stevens CV, Smagghe G, Steurbaut W (2003) Biomacromolecules 4:1457–1465CrossRefGoogle Scholar
  8. 8.
    Cota-Arriola O, Cortez-Rocha MO, Rosas-Burgos EC, Burgos-Hernández A, López-Franco YL, Plascencia-Jatomea M (2011) Polym Int 60:937–944CrossRefGoogle Scholar
  9. 9.
    Chung YC, Su YP, Chen CC, Jia G, Wang HL, Wu JCG, Lin JG (2004) Acta Pharmacol Sin 25:932–936Google Scholar
  10. 10.
    Palma-Guerrero J, Lopez-Jimenez JA, Pérez-Bernal AJ, Huang IC, Jansson HB, Salinas J, Villalain J, Read ND, López Llorca LV (2010) Mol Microbiol 75:1021–1032CrossRefGoogle Scholar
  11. 11.
    Nair R, Haritha-Reddy B, Ashok-Kumar CK, Jayraj-Kumar K (2009) J Pharm Sci Res 1:1–12Google Scholar
  12. 12.
    Du WL, Xu YL, Xu ZR, Fan CL (2008) Nanotechnology 19:1–5Google Scholar
  13. 13.
    Ali SW, Joshi M, Rajendran S (2010) Adv Sci Lett 3:452–460CrossRefGoogle Scholar
  14. 14.
    Teodoro JS, Simões AM, Duarte FV, Rolo AP, Murdoch RC, Hussain SM, Palmeira CM (2011) Toxicol In Vitro 25:665–670CrossRefGoogle Scholar
  15. 15.
    AshaRani PV, Low Kah MG, Hande MP, Valiyaveettil S (2009) ACS Nano 3:279–290CrossRefGoogle Scholar
  16. 16.
    Du WL, Niu S, Xu YL, Xu ZR, Fan CL (2009) Carbohyd Polym 75:385–389CrossRefGoogle Scholar
  17. 17.
    Qi LF, Xu ZR, Jiang X, Hu CH, Zou XF (2004) Carbohyd Res 339:2693–2700CrossRefGoogle Scholar
  18. 18.
    Sanpui P, Murugadoss A, Durga-Prasad V, Ghosh S, Chattopadhyay A (2008) Int J Food Microbiol 124:142–146CrossRefGoogle Scholar
  19. 19.
    Hu Z, Zhang J, Wing-Lai C, Shan-Szeto Y (2006) Mater Res Soc Symp Proc 920:662–668CrossRefGoogle Scholar
  20. 20.
    Cao XL, Chena C, Ma YL, Zhao CS (2010) J Mater Sci Mater Med 21:2861–2868CrossRefGoogle Scholar
  21. 21.
    Agnihotri SA, Mallikarjuna NN, Aminabhavi TM (2004) J Control Release 100:5–28CrossRefGoogle Scholar
  22. 22.
    Martínez-Camacho AP, Cortez-Rocha MO, Ezquerra-Brauer JM, Graciano-Verdugo AZ, Rodríguez-Félix F, Castillo-Ortega MM, Yépiz-Gómez MS, Plascencia-Jatomea M (2010) Carbohyd Polym 82:305–315CrossRefGoogle Scholar
  23. 23.
    Hui-Yun Z, Xi-Guang C (2008) Front Mater Sci 2:417–425CrossRefGoogle Scholar
  24. 24.
    Ruobao L, Chunling Z, Weifen Z, Lihong S, Jinbao T (2009) J Nat Sci 14:362–368Google Scholar
  25. 25.
    Poncelet D (2006) Microencapsulation: fundamentals, methods and applications. In: Blitz JP, Gun’ko VM (eds) Surface chemistry in biomedical and environmental science. Springer, Heidelberg, pp 23–34CrossRefGoogle Scholar
  26. 26.
    Mathew S, Abraham TE (2008) Food Hydrocoll 22:826–835CrossRefGoogle Scholar
  27. 27.
    Xu Y, Du Y (2003) Int J Pharm 250:215–226CrossRefGoogle Scholar
  28. 28.
    Brumkar DB, Pokhakar VB (2006) AAPS Pharm Sci Tech 7:20–25Google Scholar
  29. 29.
    Bautista-Baños S, Hernández-Lauzárdo AN, Velásquez-Del Valle MG, Hernández-López M, Ait Barka E, Bosquez-Molina E, Wilson CL (2006) Crop Prot 25:108–118CrossRefGoogle Scholar
  30. 30.
    Kong M, Chen XG, Xue YP, Liu CS, Yu LJ, Ji QX, Cha DS, Park H (2008) J Front Mater Sci China 2:214–220CrossRefGoogle Scholar
  31. 31.
    Sanpo N, Ming S, Cheang P, Khor KA (2009) J Therm Spray Technol 18(4):600–608CrossRefGoogle Scholar
  32. 32.
    Vareltuzis K, Soultos N, Koidis P, Ambrosiadis J, Gerigeorgis C (1997) Lebensmittel Wissenschaft and Technologie 30:665–669CrossRefGoogle Scholar
  33. 33.
    Sofos J (1985) J Food Sci 50:1379–1383CrossRefGoogle Scholar
  34. 34.
    Horary S, Ghajar K, Khazaeli P, Shalchian P (2011) Trop J Pharm Res 10:69–74Google Scholar
  35. 35.
    Guibal E (2004) Sep Purif Technol 38:45–74CrossRefGoogle Scholar
  36. 36.
    Plascencia-Jatomea M, Viniera G, Olayo R, Castillo-Ortega MM, Shirai K (2003) Macromol Biosci 3:582–586CrossRefGoogle Scholar
  37. 37.
    Palmeira de Oliveira R, Palmeira de Oliveira A, Gaspar C, Silvestre S, Martinez de Oliveira J, Amaral MH, Breitenfeld L (2011) Sodium tripolyphosphate: an excipient with intrinsic in vitro anti Candida activity. Int J Pharm 421:130–134CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Octavio Cota-Arriola
    • 1
  • Mario Onofre Cortez-Rocha
    • 1
  • Josafat Marina Ezquerra-Brauer
    • 1
  • Jaime Lizardi-Mendoza
    • 2
  • Armando Burgos-Hernández
    • 1
  • Rosario Maribel Robles-Sánchez
    • 1
  • Maribel Plascencia-Jatomea
    • 1
  1. 1.Departamento de Investigación y Posgrado en AlimentosUniversidad de SonoraHermosilloMexico
  2. 2.Centro de Investigaciones en Alimentación y DesarrolloAC HermosilloMexico

Personalised recommendations