Journal of Polymers and the Environment

, Volume 21, Issue 3, pp 807–815 | Cite as

Preparation and Properties of Bio-based Polyurethane Containing Polycaprolactone and Natural Rubber

  • Wannarat Panwiriyarat
  • Varaporn Tanrattanakul
  • Jean-François Pilard
  • Pamela Pasetto
  • Chuanpit Khaokong
Original Paper


Novel polyurethanes were successfully synthesized by a one-shot polymerization. They contained poly(ε-caprolactone) diol (PCL diol) and hydroxyl telechelic natural rubber (HTNR) as the soft segment. The effect of the NCO:OH molar ratio (0.75:1.00–2.25:1.00), chain extender and PCL:HTNR molar ratio (1:1, 0.7:0.3 and 0.3:0.7) on the thermal and mechanical properties of the resulting polyurethane were investigated. FTIR analysis showed the presence of urethane linkages and crosslinking or chain branching. The derived polyurethanes demonstrated excellent mechanical properties, which depended on their chemical composition. Their tensile behavior seemed to have typical elastomeric characteristics. Polyurethanes became amorphous and showed a phase separation between the PCL diol and HTNR segments. The phase separation between the soft and the hard segments was observed by the DMTA technique whereas DSC results showed only the glass transition temperatures of the soft segment. The longer and more flexible chain and non-polarity of HTNR was responsible of a decrease in the mechanical properties and transition temperatures.


Polyurethane Natural rubber Poly(caprolactone) Bio-based plastic Elastomer Renewable resources 



We gratefully acknowledge financial support from the French-Thai Cooperation Program in Higher Education and Research, the National Research Council of Thailand (NRCT), Prince of Songkla University and the Development and Promotion of Science and Technology Talents Project (DPST).


  1. 1.
    Jiang X, Li J, Ding M, Tan H, Ling Q, Zhong Y, Fu Q (2007) Eur Polym J 43:1838–1846CrossRefGoogle Scholar
  2. 2.
    Decker C, Le XH, Nguyen TVT (1996) J Polym Sci Pol Chem 34:1771–1781CrossRefGoogle Scholar
  3. 3.
    Gopakumar S, Nair MRG (2005) Polymer 46:10419–10430CrossRefGoogle Scholar
  4. 4.
    Kebir N, Morandi G, Campistron I, Laguerre A, Pilard JF (2005) Polymer 46:6844–6854CrossRefGoogle Scholar
  5. 5.
    Kebir N, Campistron I, Laguerre A, Pilard JF, Bunal C, Jouenne T (2007) Biomaterials 28:4200–4208CrossRefGoogle Scholar
  6. 6.
    Saetung A, Rungvichaniwat A, Campistron I, Klinpituksa P, Laguerre A, Phinyocheep P, Pilard JF (2010) J Appl Polym Sci 117:1279–1289CrossRefGoogle Scholar
  7. 7.
    Paul CJ, Gopinathan NMR, Koshy P, Idage BB (1999) J Appl Polym Sci 74:706–721CrossRefGoogle Scholar
  8. 8.
    Radhakrishnan NMN, Gopinathan NMR (2008) J Mater Sci 43:738–747CrossRefGoogle Scholar
  9. 9.
    Maier G, Knopfova V, Voit B, Ly PH, Dung BT, Thanh DB (2004) Mactomol Mater Eng 289:923–927CrossRefGoogle Scholar
  10. 10.
    Sun X, Ni X (2004) J Appl Polym Sci 94:2286–2294CrossRefGoogle Scholar
  11. 11.
    Gorna K, Gogolewski S (2002) Polym Degrad Stabil 75:113–122CrossRefGoogle Scholar
  12. 12.
    Younes HM, Grimaldo EB, Amsden BG (2004) Biomaterials 25:5261–5269CrossRefGoogle Scholar
  13. 13.
    Heijkants RGJC, Calck RV, Tienen TG, Groot JH, Buma P, Pennings AJ, Veth RPH, Schouten AJ (2005) Biomaterials 26:4219–4228CrossRefGoogle Scholar
  14. 14.
    Heijkants RGJC, Schwab LW, Calck RV, Groot JH, Pennings AJ, Schouten AJ (2005) Polymer 46:8981–8989CrossRefGoogle Scholar
  15. 15.
    Yeganeh H, Lakouraj MM, Jamshidi S (2005) Eur Polym J 41:2370–2379CrossRefGoogle Scholar
  16. 16.
    Liu CB, Qian ZY, Gu YC, Fan LY, Li J, Chao GT, Jia WJ, Tu MJ (2006) Mater Lett 60:31–38CrossRefGoogle Scholar
  17. 17.
    Xie Z, Lu C, Chen X, Chen L, Hu X, Shi Q, Jing X (2007) Eur Polym J 43:2080–2087CrossRefGoogle Scholar
  18. 18.
    Hong JH, Jeon HJ, Yoo JH, Yu WR, Youk JH (2007) Polym Degrad Stabil 92:1186–1192CrossRefGoogle Scholar
  19. 19.
    Tatai L, Moore TG, Adhikari R, Malherbe F, Jayasekara R, Griffiths I, Gunatillake PA (2007) Biomaterials 28:5407–5417CrossRefGoogle Scholar
  20. 20.
    Jeon HJ, Kim JS, Kim TG, Kim JH, Yu WR, Youk JH (2008) Appl Surf Sci 254:5886–5890CrossRefGoogle Scholar
  21. 21.
    Zia KM, Zuber M, Bhatti IA, Barikani M, Sheikh MA (2009) Int J Biol Macromol 44:23–28CrossRefGoogle Scholar
  22. 22.
    Han J, Chen B, Ye L, Zhang AY, Zhang J, Feng ZG (2009) Front Mater Sci China 3(1):25–32CrossRefGoogle Scholar
  23. 23.
    Larraz LR, Fernandez AB, Tercjak A, Ribes A, Mondragon I, Eceiza A (2009) Eur Polym J 45:2096–2109CrossRefGoogle Scholar
  24. 24.
    Sivakumar C, Nasar AS (2009) Eur Polym J 45:2329–2337CrossRefGoogle Scholar
  25. 25.
    Prisacariu C (2011) Polyurethane elastomers from morphology to mechanical aspects. SpingerWienNewYork, New York, pp 75–108CrossRefGoogle Scholar
  26. 26.
    Durrieu V, Gandini A, Belgacem MN, Blayo A, Eisele G, Putaux JL (2004) J Appl Polym Sci 94:700–710CrossRefGoogle Scholar
  27. 27.
    Biemond GJE, Braspenning K, Gaymans RJ (2008) J Appl Polym Sci 107:2180–2189CrossRefGoogle Scholar
  28. 28.
    Hepburn C (1991) Polyurethane elastomer, 2nd edn. Elsevier Applied Science LTD., New York, p 56Google Scholar
  29. 29.
    Kebir N, Campistron I, Laguerre A, Pilard JF, Bunal C, Jouenne T (2006) E-polymer 48:1–14Google Scholar
  30. 30.
    Mondal S, Hu J (2006) Polym Int 55:1013–1020CrossRefGoogle Scholar
  31. 31.
    Wang W, Ping P, Yu H, Chen X, Jing X (2006) J Polym Sci Pol Chem 44:5505–5512CrossRefGoogle Scholar
  32. 32.
    Ping P, Wang W, Chen X, Jing X (2007) J Polym Sci Pol Phys 45:557–570CrossRefGoogle Scholar
  33. 33.
    Gopakumar G, Nair G (2006) Polym Eng Sci 46(12):1812–1821Google Scholar
  34. 34.
    Gopakumar S, Paul CJ, Nair MRG (2005) Mater Sci-Poland 23(1):227–245Google Scholar
  35. 35.
    Bagdi K, Molnar K, Wacha A, Bota A, Pukanszky B (2011) Polym Int 60:529–536CrossRefGoogle Scholar
  36. 36.
    Jiang H, Zheng Z, Song W, Wang X (2008) J Appl Polym Sci 108:3644–3651CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Wannarat Panwiriyarat
    • 1
    • 2
  • Varaporn Tanrattanakul
    • 1
  • Jean-François Pilard
    • 2
  • Pamela Pasetto
    • 2
  • Chuanpit Khaokong
    • 1
  1. 1.Bioplastic Research Unit, Department of Materials Science and Technology, Faculty of SciencePrince of Songkla UniversitySongklaThailand
  2. 2.Institut des Molécules et Matériaux du MansUniversité du MaineLe Mans CedexFrance

Personalised recommendations