Journal of Polymers and the Environment

, Volume 21, Issue 2, pp 555–563 | Cite as

TEMPO-Mediated Oxidation of Hemp Bast Holocellulose to Prepare Cellulose Nanofibrils Dispersed in Water

  • Buapan Puangsin
  • Shuji Fujisawa
  • Ryota Kuramae
  • Tsuguyuki Saito
  • Akira Isogai
Original Paper


Hemp bast holocellulose fiber (Cannabis sativa L. Subsp. Sativa) was oxidized by TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidation at various NaClO addition levels in water at pH 10. When carboxylate contents of the oxidized products were 1.5–1.7 mmol/g, TEMPO-oxidized cellulose nanofibrils almost completely dispersed at the individual nanofibril were obtained by mechanical disintegration of the TEMPO-oxidized hemp bast holocelluloses in water, where the nanofibrillation yields were 98–100 %. The sugar composition analysis revealed that most of hemicelluloses originally present in the hemp bast holocellulose were degraded and removed from the solid oxidized products, providing almost pure TEMPO-oxidized celluloses. X-ray diffraction patterns of all TEMPO-oxidized hemp bast holocelluloses had the same cellulose I crystal structure and similar crystallinity indices and crystal widths, indicating that carboxylate groups formed by the oxidation were selectively present on the crystalline cellulose microfibril surfaces in the holocellulose. However, the weight recovery ratios and viscosity-average degrees of polymerization of the TEMPO-oxidized hemp bast holocelluloses decreased to 69–59 % and 470–380, respectively, when their carboxylate contents increased to 1.5–1.7 mmol/g by the TEMPO-mediated oxidation. Atomic force microscopy height images showed that the nanofibril widths were 2.7–2.9 nm, and the average nanofibril lengths decreased from 590 to 400 nm as the NaClO addition level was increased from 7.5 to 12.5 mmol/g in the TEMPO-mediated oxidation.


TEMPO Hemp bast Nanofibril Cellulose AFM 



The authors wish to thank Suphat Kamthai of Chaing Mai University and Queen Sirikit Botanic Garden, Thailand, who kindly provided the hemp bast sample. This research was supported by Grant-in-Aids for Scientific Research S (21228007) from the Japan Society for the Promotion of Science (JSPS). Buapan Puangsin is a recipient of the Monbu-Kagakusho Scholarship for foreign students.


  1. 1.
    Klemm D, Heubletin B, Fink HP, Bohn A (2005) Angew Chem Int Ed 44:3358CrossRefGoogle Scholar
  2. 2.
    Pérez S, Samain D (2010) Adv Carbohydr Chem Bi 64:25CrossRefGoogle Scholar
  3. 3.
    Sakurada I, Nukushina Y, Ito T (1962) J Polym Sci 57:651CrossRefGoogle Scholar
  4. 4.
    Samir MASA, Alloin F, Dufresne A (2005) Biomacromolecules 6:612CrossRefGoogle Scholar
  5. 5.
    Siró I, Plackett D (2010) Cellulose 17:459CrossRefGoogle Scholar
  6. 6.
    Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Angew Chem Int Ed 50:5438CrossRefGoogle Scholar
  7. 7.
    Isogai A, Saito T, Fukuzumi H (2011) Nanoscale 3:71CrossRefGoogle Scholar
  8. 8.
    Iwamoto S, Abe K, Yano H (2008) Biomacromolecules 9:1022CrossRefGoogle Scholar
  9. 9.
    Abe K, Yano H (2009) Cellulose 16:1017CrossRefGoogle Scholar
  10. 10.
    Chen W, Yu H, Liu Y (2011) Carbohydr Polym 86:453CrossRefGoogle Scholar
  11. 11.
    Abe K, Yano H (2010) Cellulose 17:271CrossRefGoogle Scholar
  12. 12.
    Alemdar A, Sain M (2008) Bioresour Technol 99:1664CrossRefGoogle Scholar
  13. 13.
    de Morais Teixeira E, Corrêa A, Manzoli A, de Lima Leite F, de Oliveira C, Mattoso L (2010) Cellulose 17:595CrossRefGoogle Scholar
  14. 14.
    Wang B, Sain M, Oksman K (2007) Appl Compos Mater 14:89CrossRefGoogle Scholar
  15. 15.
    Moran JI, Alvarez VA, Cyras VP, Vazquez A (2008) Cellulose 15:149CrossRefGoogle Scholar
  16. 16.
    Cherian BM, Leão AL, de Souza SF, Thomas S, Pothan LA, Kottaisamy M (2010) Carbohydr Polym 81:720CrossRefGoogle Scholar
  17. 17.
    Rosa MF, Medeiros ES, Malmonge JA, Gregorski KS, Wood DF, Matoso LHC (2010) Carbohydr Polym 81:83CrossRefGoogle Scholar
  18. 18.
    Zuluaga R, Putaux JL, Cruz J, Velez J, Mondragon I, Gãnan P (2009) Carbohydr Polym 76:51CrossRefGoogle Scholar
  19. 19.
    Mandal A, Chakrabarty D (2011) Carbohydr Polym 86:1291CrossRefGoogle Scholar
  20. 20.
    Dinand E, Chanzy H, Vignon RM (1999) Food Hydrocolloid 13:275CrossRefGoogle Scholar
  21. 21.
    Dufresne A, Cavaille JY, Vignon MR (1997) J Appl Polym Sci 64:1185CrossRefGoogle Scholar
  22. 22.
    Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Biomacromolecules 7:1687CrossRefGoogle Scholar
  23. 23.
    Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Biomacromolecules 8:2485CrossRefGoogle Scholar
  24. 24.
    Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L (2009) Biomacromolecules 10:1992CrossRefGoogle Scholar
  25. 25.
    Iwamoto S, Kai W, Isogai A, Iwata T (2009) Biomacromolecules 10:2571CrossRefGoogle Scholar
  26. 26.
    Gümüşkaya E, Usta M, Balaban M (2006) Bioresour Technol 98:491CrossRefGoogle Scholar
  27. 27.
    Wang HM, Postle R, Kessler RW, Kessler W (2003) Text Res J 73:664CrossRefGoogle Scholar
  28. 28.
    Kostic M, Pejic B, Skundric P (2008) Bioresour Technol 99:94CrossRefGoogle Scholar
  29. 29.
    Sbiai A, Kaddami H, Sautereau H, Maazouz A, Fleury E (2011) Carbohydr Polym 86:1445CrossRefGoogle Scholar
  30. 30.
    Milanovic J, Kostic M, Milanovic P, Skundric P (2012) Ind Eng Chem Res 51:9750CrossRefGoogle Scholar
  31. 31.
    Wise LE, Marphy M, D’Adieco A (1946) Paper Trade J 122:35Google Scholar
  32. 32.
    Shinoda R, Saito T, Okita Y, Isogai A (2012) Biomacromolecules 13:842CrossRefGoogle Scholar
  33. 33.
    Tappi Text Method T 249 cm-00 (2009)Google Scholar
  34. 34.
    Yamamoto M, Kuramae R, Yanagisawa M, Ishii D, Isogai A (2011) Biomacromolecules 12:3982CrossRefGoogle Scholar
  35. 35.
    Okita Y, Saito T, Isogai A (2009) Holzforschung 63:529CrossRefGoogle Scholar
  36. 36.
    Testing method for dissolving pulp. JIS P8101 (1994)Google Scholar
  37. 37.
    Saito T, Isogai A (2004) Biomacromolecules 5:1983CrossRefGoogle Scholar
  38. 38.
    Isogai T, Saito T, Isogai A (2011) Cellulose 18:421CrossRefGoogle Scholar
  39. 39.
    Alexander LE (1979) X-ray diffraction methods in polymer science. Krieger, New YorkGoogle Scholar
  40. 40.
    Okita Y, Saito T, Isogai A (2010) Biomacromolecules 11:1696CrossRefGoogle Scholar
  41. 41.
    Fujisawa S, Isogai T, Isogai A (2010) Cellulose 17:607CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Buapan Puangsin
    • 1
    • 2
  • Shuji Fujisawa
    • 1
  • Ryota Kuramae
    • 1
  • Tsuguyuki Saito
    • 1
  • Akira Isogai
    • 1
  1. 1.Department of Biomaterial SciencesThe University of TokyoBunkyo-ku, TokyoJapan
  2. 2.Faculty of ForestryKasetsart UniversityBangkokThailand

Personalised recommendations