Journal of Polymers and the Environment

, Volume 20, Issue 4, pp 1084–1094 | Cite as

Layer-by-Layer Deposition of Antibacterial Polyelectrolytes on Cotton Fibres

  • Ana P. Gomes
  • João F. Mano
  • João A. Queiroz
  • Isabel C. GouveiaEmail author
Original Paper


The introduction of molecules with biological properties on textile materials is essential for a number of biotechnological applications. With the purpose of testing new processes applied to textiles, in this study, we present the first results on the feasibility of using the Layer-by-Layer (LbL) deposition process in natural fibers such as cotton, with natural polyelectrolytes like chitosan (CH) and alginic acid sodium salt (ALG), the durability of CH/ALG multilayer on cotton were evaluated. The increase of negative charges to the substrate cotton was made with NaBr and TEMPO, to ensure the success of the process of LbL. Three characterization methods to assess electrostatic LbL deposition were performed: the contact angle between a liquid (water) and the sample surface, in order to characterize the wettability of the samples with the different layers of CH and ALG; dyeing of the CH/ALG assembled cotton fabric with cationic methylene blue that shows regular changes in terms of color depth (K/S value), which indicate that the surface were alternately deposited with CH and ALG layers and, finally, the analysis by infrared spectroscopy using Fourier Transform with Attenuated Total Reflection (ATR-FTIR), to assess the changes in the interaction between CH and ALG deposited on cotton samples.


Layer-by-layer Contact angle ATR-FTIR Chitosan Alginate 



The authors wish to acknowledge the Fundação para a Ciência e Tecnologia and Compete for the financial support of the project: PTDC/EBB-BIO/113671/2009 Skin2Tex.


  1. 1.
    Joshi M, Ali SW, Agarwal N (2009) Functional nanocoatings on textiles through layer-by-layer self assembly. In: Proceedings of the fiber society 2009 spring conference, vols I and Ii, pp 956Google Scholar
  2. 2.
    Gulrajani ML, Gupta D (2011) Emerging techniques for functional finishing of textiles. Indian J Fibre Text Res 36(4):388–397Google Scholar
  3. 3.
    Ali SW, Rajendran S, Joshi M (2010) Effect of process parameters on layer-by-layer self-assembly of polyelectrolytes on cotton substrate. Polym Polym Comp 18(5):175–187Google Scholar
  4. 4.
    Gowri S et al (2010) Polymer nanocomposites for multifunctional finishing of textiles—a review. Text Res J 80(13):1290–1306CrossRefGoogle Scholar
  5. 5.
    Richert L et al (2004) Layer by layer buildup of polysaccharide films: physical chemistry and cellular adhesion aspects. Langmuir 20(2):448–458CrossRefGoogle Scholar
  6. 6.
    Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277(5330):1232–1237CrossRefGoogle Scholar
  7. 7.
    Chen W, McCarthy TJ (1997) Layer-by-layer deposition: a tool for polymer surface modification. Macromolecules 30(1):78–86CrossRefGoogle Scholar
  8. 8.
    Decher G, Hong JD, Schmitt J (1992) Buildup of ultrathin multilayer films by a self-assembly process. 3. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films 210(1–2):831–835CrossRefGoogle Scholar
  9. 9.
    Martins GV et al (2010) Crosslink effect and albumin adsorption onto chitosan/alginate multilayered systems: an in situ QCM-D study. Macromol Biosci 10(12):1444–1455CrossRefGoogle Scholar
  10. 10.
    Picart C et al (2001) Determination of structural parameters characterizing thin films by optical methods: a comparison between scanning angle reflectometry and optical waveguide lightmode spectroscopy. J Chem Phys 115(2):1086–1094CrossRefGoogle Scholar
  11. 11.
    Ibarz G et al (2001) Smart micro- and nanocontainers for storage, transport, and release. Adv Mater 13(17):1324–1327CrossRefGoogle Scholar
  12. 12.
    Hyde K, Rusa M, Hinestroza J (2005) Layer-by-layer deposition of polyelectrolyte nanlayers on natural fibres: cotton. Nanotechnology 16(7):S422–S428CrossRefGoogle Scholar
  13. 13.
    Ariga K, Hill JP, Ji QM (2008) Biomaterials and Biofunctionality in Layered Macromolecular Assemblies. Macromol Biosci 8(11):981–990CrossRefGoogle Scholar
  14. 14.
    Hyde K, Dong H, Hinestroza JP (2007) Effect of surface cationization on the conformal deposition of polyelectrolytes over cotton fibers. Cellulose 14(6):615–623CrossRefGoogle Scholar
  15. 15.
    Wang Q, Hauser PJ (2009) New characterization of layer-by-layer self-assembly deposition of polyelectrolytes on cotton fabric. Cellulose 16(6):1123–1131CrossRefGoogle Scholar
  16. 16.
    Wang Q, Hauser PJ (2010) Developing a novel UV protection process for cotton based on layer-by-layer self-assembly. Carbohydr Polym 81(2):491–496CrossRefGoogle Scholar
  17. 17.
    Ugur SS et al (2010) Modifying of cotton fabric surface with nano-ZnO multilayer films by layer-by-layer deposition method. Nanoscale Res Lett 5(7):1204–1210CrossRefGoogle Scholar
  18. 18.
    Ali SW, Joshi M, Rajendran S (2011) Novel, self-assembled antimicrobial textile coating containing chitosan nanoparticles. Aatcc Rev 11(5):49–55Google Scholar
  19. 19.
    Polowinski S (2005) Polyelectrolyte layer-by-layer processed coated textiles. Fibres Text Eastern Eur 13(6):50–52Google Scholar
  20. 20.
    Jantas R, Polowinski S (2007) Modifying of polyester fabric surface with polyelectrolyte nanolayers using the layer-by-layer deposition technique. Fibres Text Eastern Eur 15(2):97–99Google Scholar
  21. 21.
    Polowinski S (2007) Deposition of polymer complex layers onto nonwoven textiles. J Appl Polym Sci 103(3):1700–1705CrossRefGoogle Scholar
  22. 22.
    Stawski D, Bellmann C (2009) Electrokinetic properties of polypropylene textile fabrics containing deposited layers of polyelectrolytes. Colloids Surf Physicochem Eng Aspects 345(1–3):191–194CrossRefGoogle Scholar
  23. 23.
    Saito T et al (2005) Distribution of carboxylate groups introduced into cotton linters by the TEMPO-mediated oxidation. Carbohydr Polym 61(4):414–419CrossRefGoogle Scholar
  24. 24.
    Montanari S et al (2005) Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation. Macromolecules 38(5):1665–1671CrossRefGoogle Scholar
  25. 25.
    Isogai A et al (2006) TEMPO-mediated oxidation of native cellulose: microscopic analysis of fibrous fractions in the oxidized products. Carbohydr Polym 65(4):435–440CrossRefGoogle Scholar
  26. 26.
    Dang Z, Zhang JG, Ragauskas AJ (2007) Characterizing TEMPO-mediated oxidation of ECF bleached softwood kraft pulps. Carbohydr Polym 70(3):310–317CrossRefGoogle Scholar
  27. 27.
    Praskalo J et al (2009) Sorption properties of TEMPO-oxidized natural and man-made cellulose fibers. Carbohydr Polym 77(4):791–798CrossRefGoogle Scholar
  28. 28.
    Saito T et al (2006) TEMPO-mediated oxidation of native cellulose: microscopic analysis of fibrous fractions in the oxidized products. Carbohydr Polym 65(4):435–440CrossRefGoogle Scholar
  29. 29.
    Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5(5):1983–1989CrossRefGoogle Scholar
  30. 30.
    Singh R et al (2005) Antimicrobial activity of some natural dyes. Dyes Pigm 66(2):99–102CrossRefGoogle Scholar
  31. 31.
    Gao Y, Cranston R (2008) Recent advances in antimicrobial treatments of textiles. Text Res J 78(1):60–72CrossRefGoogle Scholar
  32. 32.
    Papaspyrides CD, Pavlidou S, Vouyiouka SN (2009) Development of advanced textile materials: natural fibre composites, anti-microbial, and flame-retardant fabrics. In: Proceedings of the institution of mechanical engineers part L-journal of materials-design and applications, vol 223(L2), p 91-U2Google Scholar
  33. 33.
    Kramer A et al (2006) Hygienic relevance and risk assessment of antimicrobial-impregnated textiles. Curr Probl Dermatol 33:78–109CrossRefGoogle Scholar
  34. 34.
    Zilberman M, Elsner JJ (2008) Antibiotic-eluting medical devices for various applications. J Controlled Release 130(3):202–215CrossRefGoogle Scholar
  35. 35.
    Gomes A, Mano J, Queiroz J, Gouveia I (2010) Assessement of bacteria-textile interactions using scanning electron microscopy: a study on LbL chitosan/alginate coated cotton. In Méndez-Vilas A (ed) Microscopy: science, technology, applications and education. Formatex, Spain, pp 286–292Google Scholar
  36. 36.
    Maurstad G et al (2008) Polyelectrolyte layer interpenetration and swelling of alginate-chitosan multilayers studied by dual wavelength reflection interference contrast microscopy. Carbohydr Polym 71(4):672–681CrossRefGoogle Scholar
  37. 37.
    Ding Y et al (2009) Assembled alginate/chitosan micro-shells for removal of organic pollutants. Polymer 50(13):2841–2846CrossRefGoogle Scholar
  38. 38.
    Xie YL, Wang MJ, Yao SJ (2009) Preparation and characterization of biocompatible microcapsules of sodium cellulose sulfate/chitosan by means of layer-by-layer self-assembly. Langmuir 25(16):8999–9005CrossRefGoogle Scholar
  39. 39.
    Zhao QH et al (2006) Assembly of multilayer microcapsules on CaCO3 particles from biocompatible polysaccharides. J Biomaterials Sci Polym Edition 17(9):997–1014CrossRefGoogle Scholar
  40. 40.
    Yang Y et al (2007) Assembled alginate/chitosan nanotubes for biological application. Biomaterials 28(20):3083–3090CrossRefGoogle Scholar
  41. 41.
    Alves NM, Picart C, Mano JF (2009) Self assembling and crosslinking of polyelectrolyte multilayer films of chitosan and alginate studied by QCM and IR spectroscopy. Macromol Biosci 9(8):776–785CrossRefGoogle Scholar
  42. 42.
    Deng HB et al (2010) Layer-by-layer structured polysaccharides film-coated cellulose nanofibrous mats for cell culture. Carbohydr Polym 80(2):474–479CrossRefGoogle Scholar
  43. 43.
    Lawrie G et al (2007) Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS. Biomacromolecules 8(8):2533–2541CrossRefGoogle Scholar
  44. 44.
    Khalil-Abad MS, Yazdanshenas ME (2010) Superhydrophobic antibacterial cotton textiles. J Colloid Interface Sci 351(1):293–298CrossRefGoogle Scholar
  45. 45.
    Rotta J et al (2009) Parameters of color, transparency, water solubility, wettability and surface free energy of chitosan/hydroxypropylmethylcellulose (HPMC) films plasticized with sorbitol. Mater Sci Eng C-Biomimetic Supramol Syst 29(2):619–623CrossRefGoogle Scholar
  46. 46.
    Kwok DY, Neumann AW (1999) Contact angle measurement and contact angle interpretation. Adv Colloid Interface Sci 81(3):167–249CrossRefGoogle Scholar
  47. 47.
    Dubas ST, Kumlangdudsana P, Potiyaraj P (2006) Layer-by-layer deposition of antimicrobial silver nanoparticles on textile fibers. Colloids Surf Physicochem Eng Aspects 289(1–3):105–109CrossRefGoogle Scholar
  48. 48.
    Peterlin S et al (2009) Dyeing of papermaking fibers with dyes of various structural types as a means for fiber surface characterization. Acta Chim Slov 56(2):418–425Google Scholar
  49. 49.
    Kokhanovsky AA (2007) Physical interpretation and accuracy of the Kubelka-Munk theory. J Phys D Appl Phys 40(7):2210–2216CrossRefGoogle Scholar
  50. 50.
    Kubelka P (1948) New contributions to the optics of intensely light-scattering materials. J Optical Soc Am 38(5):448–457CrossRefGoogle Scholar
  51. 51.
    ElSherif M, Bayoumi OA, Sokkar TZN (1997) Prediction of absorbance from reflectance for an absorbing-scattering fabric. Color Res Appl 22(1):32–39CrossRefGoogle Scholar
  52. 52.
    Yuan WY et al (2007) pH-controlled construction of chitosan/alginate multilayer film: characterization and application for antibody immobilization. Langmuir 23(26):13046–13052CrossRefGoogle Scholar
  53. 53.
    Zhao Y et al (2010) Superhydrophobic cotton fabric fabricated by electrostatic assembly of silica nanoparticles and its remarkable buoyancy. Appl Surf Sci 256(22):6736–6742CrossRefGoogle Scholar
  54. 54.
    Hsu SH et al (2004) Chitosan as scaffold materials: Effects of molecular weight and degree of deacetylation. J Polym Res Taiwan 11(2):141–147CrossRefGoogle Scholar
  55. 55.
    Xie HG et al (2010) Effect of surface wettability and charge on protein adsorption onto implantable alginate-chitosan-alginate microcapsule surfaces. J Biomed Mater Res Part A 92A(4):1357–1365Google Scholar
  56. 56.
    Liu YL et al (2007) Chitosan/poly(tetrafluoroethylene) composite membranes using in pervaporation dehydration processes. J Membr Sci 287(2):230–236CrossRefGoogle Scholar
  57. 57.
    Rane AB et al (2009) Formulation and evaluation of press coated tablets for pulsatile drug delivery using hydrophilic and hydrophobic polymers. Chem Pharm Bull 57(11):1213–1217CrossRefGoogle Scholar
  58. 58.
    Oddo L et al (2010) Novel thermosensitive calcium alginate microspheres: physico-chemical characterization and delivery properties. Acta Biomater 6(9):3657–3664CrossRefGoogle Scholar
  59. 59.
    Mengatto L, Luna JA, Cabrera MI (2010) Influence of cross-linking density on swelling and estradiol permeation of chitosan membranes. J Mater Sci 45(4):1046–1051CrossRefGoogle Scholar
  60. 60.
    Yao BL et al (2010) Hydrophobic modification of sodium alginate and its application in drug controlled release. Bioprocess Biosyst Eng 33(4):457–463CrossRefGoogle Scholar
  61. 61.
    Carneiro-Da-Cunha MG et al (2010) Physical and thermal properties of a chitosan/alginate nanolayered PET film. Carbohydr Polym 82(1):153–159CrossRefGoogle Scholar
  62. 62.
    Chung C, Lee M, Choe EK (2004) Characterization of cotton fabric scouring by FT-IR ATR spectroscopy. Carbohydr Polym 58(4):417–420CrossRefGoogle Scholar
  63. 63.
    Wang Q et al (2006) Characterization of bioscoured cotton fabrics using FT-IR ATR spectroscopy and microscopy techniques. Carbohydr Res 341(12):2170–2175CrossRefGoogle Scholar
  64. 64.
    Yan HJ et al (2009) Analysis of the chemical composition of cotton seed coat by Fourier-transform infrared (FT-IR) microspectroscopy. Cellulose 16(6):1099–1107CrossRefGoogle Scholar
  65. 65.
    Dai M et al (2009) Chitosan-alginate sponge: preparation and application in curcumin delivery for dermal wound healing in rat. J Biomed Biotechnol 2009:1–8CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Ana P. Gomes
    • 1
  • João F. Mano
    • 2
    • 3
  • João A. Queiroz
    • 4
  • Isabel C. Gouveia
    • 5
    Email author
  1. 1.Optical Centre, University of Beira InteriorCovilhãPortugal
  2. 2.3B’s Research Group, Biomaterials, Biodegradables and BiomimeticsHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of MinhoTaipasPortugal
  3. 3.ICVS/3B’s, PT Government Associate LaboratoryBragaPortugal
  4. 4.Health Sciences Research Centre, University of Beira InteriorCovilhãPortugal
  5. 5.R&D Unit of Textile and Paper Materials, Faculty of EngineeringUniversity of Beira InteriorCovilhãPortugal

Personalised recommendations