Advertisement

Journal of Polymers and the Environment

, Volume 21, Issue 1, pp 71–80 | Cite as

Comparative Sustainability Assessment of Starch Nanocrystals

  • Déborah LeCorre
  • Catharina Hohenthal
  • Alain Dufresne
  • Julien BrasEmail author
Original Paper

Abstract

Fossil energy depletion and growing environmental concerns have brought up increasing interest in bio-based eco-efficient and high technology materials. Among them, starch nanocrystals (SNC) consist of crystalline nano-platelets produced from the hydrolysis of starch and mainly used as nano-fillers in polymeric matrix. New applications have brought up the need for scaling-up the SNC preparation process. However, for this new bio-based nano-material to be sustainable, its preparation and processing should have limited impacts on the environment. Thus, together with analyzing and making recommendations for the scaling-up of SNC production process, it is worth identifying “environmentally sensitive” steps using life cycle analysis (LCA). To that purpose, different scenarios have been proposed and compared according to different environmental impacts. Also, a comparison to its main competitor, i.e. organically modified nanoclay (OMMT), is proposed. From a LCA point of view, SNC preparation requires less energy than OMMT extraction, but global warming and acidification indicators were higher than for OMMT. However, SNC have the added advantages to be renewable and biodegradable contrary to OMMT which contribute to non-renewable energy and mineral depletion. Thus, used as filler, SNC have a positive impact on the end of life of the filled material. From these observations, recommendations for the scaling-up of the SNC preparation process are made and deal mainly with the use of land and water.

Keywords

Life cycle analysis (LCA) Starch Nanocrystals Toxicology Nanoclay 

References

  1. 1.
    Geraci CL (2011) 2011 TAPPI Intl Conf Nano Renew MaterGoogle Scholar
  2. 2.
    Habibi Y, Lucia L, Rojas O (2010) Chem Rev 110(6):3479–3500Google Scholar
  3. 3.
    Paillet M, Dufresne A (2001) Macromolecules 34(19):6527–6530CrossRefGoogle Scholar
  4. 4.
    Gopalan Nair K, Dufresne A (2003) Biomacromolecules 4(3):666–674CrossRefGoogle Scholar
  5. 5.
    Morin A, Dufresne A (2002) Macromolecules 35(6):2190–2199CrossRefGoogle Scholar
  6. 6.
    Le Corre D, Bras J, Dufresne A (2010) Biomacromolecules 11(5):1139–1153CrossRefGoogle Scholar
  7. 7.
    Angellier H, Choisnard L, Molina-Boisseau S, Ozil P, Dufresne A (2004) Biomacromolecules 5:1545–1551CrossRefGoogle Scholar
  8. 8.
    Putaux JL, Molina-Boisseau S, Momaur T, Dufresne A (2003) Biomacromolecules 4(5):1198–1202CrossRefGoogle Scholar
  9. 9.
    Chen G, Wei M, Chen J, Huang J, Dufresne A, Chang PR (2008) Polymer 49(7):1860–1870CrossRefGoogle Scholar
  10. 10.
    Chen Y, Cao X, Chang PR, Huneault MA (2008) Carbohydr Polym 73(1):8–17CrossRefGoogle Scholar
  11. 11.
    Yu J, Ai F, Dufresne A, Gao S, Huang J, Chang PR (2008) Macromol Mater Eng 293(9):763–770CrossRefGoogle Scholar
  12. 12.
    Garcia NL, Ribba L, Dufresne A, Aranguren MI, Goyanes S (2009) Macromol Mater Eng 294(3):169–177CrossRefGoogle Scholar
  13. 13.
    Namazi H, Dadkhah A (2008) J Appl Polym Sci 110(4):2405–2412CrossRefGoogle Scholar
  14. 14.
    LeCorre D, Bras J, Dufresne A (2011) Macromol Mater Eng. doi: 10.1002/mame.201100317
  15. 15.
    Angellier H, Molina-Boisseau S, Lebrun L, Dufresne A (2005) Macromolecules 38(9):3783–3792CrossRefGoogle Scholar
  16. 16.
    Bras J, Hassan ML, Bruzesse C, Hassan EA, El-Wakil NA, Dufresne A (2010) Ind Crops Prod 32(3):627–633CrossRefGoogle Scholar
  17. 17.
    Kümmerer K, Menz J, Schubert T, Thielemans W (2011) Chemosphere 82(10):1387–1392CrossRefGoogle Scholar
  18. 18.
    Lin N, Huang J, Chang PR, Feng L, Yu J (2011) Coll Surf B Biointerf 85(2):270–279CrossRefGoogle Scholar
  19. 19.
    Zhang X, Huang J, Chang PR, Li J, Chen Y, Wang D, Yu J, Chen J (2010) Polymer 51(19):4398–4407CrossRefGoogle Scholar
  20. 20.
    Valodkar M, Thakore S (2011) Carbohydr Res 345(16):2354–2360CrossRefGoogle Scholar
  21. 21.
    Bruntland G (1987) Our common future. The world commission on environment and development. Oxford University Press, OxfordGoogle Scholar
  22. 22.
    Johansson C, Järnstrom L, Breen C (2010) WO/2010/077203Google Scholar
  23. 23.
    ISO 14040 (1997) Environmental management—life cylce assessment—principles and framework. ISO 14040:1997(E)Google Scholar
  24. 24.
    Goedkoop M, Oele M, Schrywer Ad, Vieira M (2008) SimaPro database manual—Methods libraryGoogle Scholar
  25. 25.
    Actu Environnement (2003) Dictionnaire Encyclopedique—Definition de Acidification COGITERRA 16/07/2011Google Scholar
  26. 26.
    Truhaut R (1977) Ecotoxicol Environ Saf 1(2):151–173CrossRefGoogle Scholar
  27. 27.
    Franklin Associates (2006) Chem Eng, 15 March 2006 (pers commun)Google Scholar
  28. 28.
  29. 29.
    Gold MV (2007) What is organic production? USDA Definition and Regulations USDA September 2011 http://www.nal.usda.gov/afsic/pubs/ofp/ofp.shtml
  30. 30.
    USDA (2006) Organic Foods August 2011 http://usda-fda.com/articles/organic.htm
  31. 31.
    Pimentel D, Hepperly P, Hanson J, Seidel R, Douds D (2005) Organic and conventional farming systems: environmental and economic issuesGoogle Scholar
  32. 32.
    DeBenedetti B, Camino G, Tabuani D, Maffia L, Santarén J, Aguilar E (2006) STRP European research program “NANOFIRE”, No. 505637, 6th Framework Program Comparison between eco-profiles of innovative nanoclay and traditional TBBPA flame retardantsGoogle Scholar
  33. 33.
    Hohenthal C, Veuro S, Kuisma M (2011) D6.6: sustainability assessment for renewable biopolymer based flexible packaging paper http://www.flexpakrenew.eu/documentation.cfm
  34. 34.
    Hohenthal C, Veuro S (2011) FlexPakRenew workshopGoogle Scholar
  35. 35.
    LeCorre D, Bras J, Dufresne A (2011) Carbohydr Polym 86(4):1565–1572CrossRefGoogle Scholar
  36. 36.
    LeCorre D, Bras J, Dufresne A (2011) Surf Coat Technol (submitted)Google Scholar
  37. 37.
    Vilaplana F, Strömberg E, Karlsson S (2010) Polym Degrad Stab 95(11):2147–2161CrossRefGoogle Scholar
  38. 38.
    Fleischer T, Grunwald A (2008) J Clean Prod 16(8–9):889–898CrossRefGoogle Scholar
  39. 39.
    Lordan S, Kennedy J, Higginbotham C (2011) Appl Toxicol 31(1):27–35CrossRefGoogle Scholar
  40. 40.
    Kovacs T, Naish V, O’Connor B, Blaise C, Gagné F, Hall L, Trudeau V, Martel P (2010) Nanotoxicology 4(3):255–270CrossRefGoogle Scholar
  41. 41.
    Foster EJ, Clift MJD, Rothen-Rutishauser B, Weder C (2011) 2011 TAPPI Intl Conf Nano Renew MaterGoogle Scholar
  42. 42.
    Villanova JCO, Ayres E, Carvalho SM, Patrício PS, Pereira FV, Oréfice RL (2011) Eur J Pharm Sci 42(4):406–415CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Déborah LeCorre
    • 1
  • Catharina Hohenthal
    • 2
  • Alain Dufresne
    • 1
  • Julien Bras
    • 1
    Email author
  1. 1.The International School of Paper, Print Media and Biomaterials (Pagora)Grenoble Institute of TechnologySaint Martin d’Hères CedexFrance
  2. 2.VTT, Technical Research Center of FinlandVTTFinland

Personalised recommendations