Advertisement

Journal of Polymers and the Environment

, Volume 20, Issue 3, pp 858–864 | Cite as

Coagulation of Sericin Protein in Silk Degumming Wastewater Using Quaternized Chitosan

  • Junxiong Lin
  • Lan Wang
  • Lei Wang
Original Paper

Abstract

The evaluation of 2-hydroxypropyltrimethyl ammonium chloride chitosan (HACC), a biodegradable cationic polymer, for the coagulation of sericin in silk degumming waste solution was carried out using jar-test coagulation experiments. The coagulation efficiency was assessed by the factors of residual turbidity, sericin removal and CODCr. The results indicated that the efficiency were dependent on the operational parameters of pH, coagulant dosage and settling time. The optimal pH value was found to be around 8, while a 1 g/L HACC dosage was sufficient in providing more than 98 % turbidity removal and 76 % sericin removal. The results were comparable to those got by the use of conventional coagulants. The coagulation of sericin by HACC may be involved in a dual mechanism including charge neutralization and bridging mechanism. Moreover, the sludge cake from the coagulation, mainly containing sericin protein and modified chitosan, might be used as finishing agent for polyester fabric or food additive for animals after fundamental purified.

Keywords

Chitosan Sericin Coagulation Flocculation 

Notes

Acknowledgments

The authors express their gratitude to the Zhejiang Provincial Key Innovation Team (No. 2010R50038) for financial support of this research.

References

  1. 1.
    Capar G, Aygun SS, Gecit MR (2008) J Membr Sci 325:920CrossRefGoogle Scholar
  2. 2.
    Rigoni-Stern S, Szpyrkowicz L, Zilio-Grandi F (1996) Water Sci Technol 33:95Google Scholar
  3. 3.
    Aramwit P, Sangckul A (2007) Biosci Biotechnol Biochem 71:2473CrossRefGoogle Scholar
  4. 4.
    Tsubouchi K, Igarashi Y, Takasu Y, Yamada H (2005) Biosci Biotechnol Biochem 69:403CrossRefGoogle Scholar
  5. 5.
    Miyazaki T, Ohtsuki C, Takeuchi A, Kamitakahara M, Ogata S, Tanihara M, Tanaka H, Yamazaki M, Furutani Y, Kinoshita H (2004) Trans Mater Res Soc Jpn 29:2923Google Scholar
  6. 6.
    Masahiro S, Hideyuki Y, Norihisa K (2000) Nutr Res 20:1505Google Scholar
  7. 7.
    Wu JH, Wang Z, Xu SY (2007) Food Chem 103:1255CrossRefGoogle Scholar
  8. 8.
    Vaithanomsat P, Kitpreechavanich V (2008) Sep Purif Technol 59:129CrossRefGoogle Scholar
  9. 9.
    Fabiani C, Pizzichini M, Spadoni M, Zeddita G (1996) Desalination 105:1CrossRefGoogle Scholar
  10. 10.
    Capar G, Aygun SS, Gecit MR (2009) J Membr Sci 342:179CrossRefGoogle Scholar
  11. 11.
    Vílchez S, Erra P (2010) Fiber Polym 11:28CrossRefGoogle Scholar
  12. 12.
    Suyatma NE, Copinet A, Legin-Copinet E, Fricoteaux F, Coma V (2011) J Polym Environ 19:166CrossRefGoogle Scholar
  13. 13.
    Brine CJ, Sandford PA, Zikakis JP (1992) Advances in Chitin and Chitosan. Elsevier, LondonCrossRefGoogle Scholar
  14. 14.
    Guibal E (2004) Sep Purif Technol 38:43CrossRefGoogle Scholar
  15. 15.
    Crini G, Badot PM (2008) Prog Polym Sci 33:399CrossRefGoogle Scholar
  16. 16.
    Bhatnagar A, Sillanpää M (2009) Adv Colloid Interf Sci 152:26CrossRefGoogle Scholar
  17. 17.
    Chi FH, Cheng WP (2006) J Polym Environ 14:411CrossRefGoogle Scholar
  18. 18.
    Hughes J, Ramsden DK, Symes KC (1990) Biotechnol Tech 4:55CrossRefGoogle Scholar
  19. 19.
    Zeng D, Wu J, Kennedy JF (2008) Carbohydr Polym 71:135CrossRefGoogle Scholar
  20. 20.
    Ganjidoust H, Tatsumi K, Yamagishi T, Gholian R (1997) Water Sci Technol 35:291–296CrossRefGoogle Scholar
  21. 21.
    Sajomsang W (2010) Carbohydr Polym 80:631CrossRefGoogle Scholar
  22. 22.
    Kumar MNVR, Muzzarelli RAA, Muzzarelli C, Sashiwa H, Domb AJ (2004) Chem Rev 104:6017CrossRefGoogle Scholar
  23. 23.
    Kurita K (2001) Prog Polym Sci 26:1921CrossRefGoogle Scholar
  24. 24.
    Moury VK, Nazma NI (2008) React Funct Polym 68:1013CrossRefGoogle Scholar
  25. 25.
    Bough WA, Salter WL, Wu ACM, Perkins BE (1978) Biotechnol Bioeng 20:1931CrossRefGoogle Scholar
  26. 26.
    Selmer-Olsen E, Ratnaweera HC, Pehrson R (1996) Water Sci Technol 34:33Google Scholar
  27. 27.
    Cheng WP, Chi FH, Yu RF, Lee YC (2005) J Polym Environ 13:383CrossRefGoogle Scholar
  28. 28.
    Gulrajani ML, Brahma KP, Kumar SP, Purwar R (2008) J Appl Polym Sci 109:314CrossRefGoogle Scholar
  29. 29.
    Kongdee A, Chinthawan N (2007) Res J Text Apparel 11:18Google Scholar
  30. 30.
    Muzzarelli RAA, Tanfani F, Emanuelli M (1984) Carbohydr Res 126:225CrossRefGoogle Scholar
  31. 31.
    Itzhaki RF, Gill DM (1964) Analyt Biochem 9:401CrossRefGoogle Scholar
  32. 32.
    Teramoto H, Kameda T, Tamada Y (2008) Biosci Biotechol Biochem 72:3189CrossRefGoogle Scholar
  33. 33.
    Weber WJJ (1972) Physicochemical processes. Wiley, New YorkGoogle Scholar
  34. 34.
    McLachlan DRC (1995) Environmetrics 6:233CrossRefGoogle Scholar
  35. 35.
    Rizzo L, Gennaro AD, Gallo M, Belgiorno V (2008) Sep Purif Technol 62:79CrossRefGoogle Scholar
  36. 36.
    Guibal E, Roussy J (2007) React Funct Polym 67:33CrossRefGoogle Scholar
  37. 37.
    Zouboulis AI, Chai XL, Katsoyiannis IA (2004) J Environ Manage 70:35CrossRefGoogle Scholar
  38. 38.
    Salehizadeh H, Shojaosadati SA (2001) Biotechnol Adv 19:371CrossRefGoogle Scholar
  39. 39.
    Divakaran R, Pillai VNS (2001) Water Res 35:3904CrossRefGoogle Scholar
  40. 40.
    Strand SP, Varum KM, Otgaard K (2003) Colloid Surf B 27:71CrossRefGoogle Scholar
  41. 41.
    Roussy J, Vooren MV, Dempsey BA, Guibl E (2005) Water Res 39:3247CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Engineering Research Center for Dyeing and Finishing of TextilesZhejiang Sci-Tech University, Ministry of Education of ChinaHangzhouChina
  2. 2.Key Laboratory of Advanced Textile Materials and Manufacturing TechnologyZhejiang Sci-Tech University, Ministry of Education of ChinaHangzhouChina

Personalised recommendations