Journal of Polymers and the Environment

, Volume 20, Issue 2, pp 607–617 | Cite as

Structural Differences Between Lignin Model Polymers Synthesized from Various Monomers

  • Daniela Djikanović
  • Jasna Simonović
  • Aleksandar Savić
  • Ivan Ristić
  • Danica Bajuk-Bogdanović
  • Aleksandar Kalauzi
  • Suzana Cakić
  • Jaroslava Budinski-Simendić
  • Milorad Jeremić
  • Ksenija Radotić
Original Paper


In a plant cell wall, lignin is synthesized from several monomeric precursors, combined in various ratios. The variation in monomer type and quantity enables multifunctional role of lignin in plants. Thus, it is important to know how different combinations of lignin monomers impact variability of bond types and local structural changes in the polymer. Lignin model polymers are a good model system for studies of relation between variations of the starting monomers and structural variations within the polymer. We synthesized lignin model polymers from three monomers, CF—based on coniferyl alcohol and ferulic acid in monomer proportions 5:1 and 10:1 (w/w), CP—based on coniferyl alcohol and p-coumaric acid in proportion 10:1 (w/w) and CA—based on pure coniferyl alcohol. We studied structural modifications in the obtained polymers, by combining fluorescence microscopy and spectroscopy, FT-IR and Raman spectroscopy, in parallel with determination of polymers’ molecular mass distribution. The differences in the low M w region of the distribution curves of the 10:1 polymers in comparison with the CA polymer may be connected with the increased content of C=C bonds and decreased content of condensed structures, as observed in FT-IR spectra and indicated by the analysis of fluorescence spectra. The 5:1 CF polymer contains a different type of structure in comparison with the 10:1 CF polymers, reflected in its simpler M w distribution, higher homogeneity of the fluorescence emitting structures and in the appearance of a new high-wavelength emission component. We propose that this component may originate from π-conjugated chains, which are longer in this polymer. The results are a contribution to the understanding of the involvement of structural variations of lignin polymers in the cell wall structural plasticity.


Lignin model polymers Phenylpropanoid monomers Synthesis Molecular mass distribution Fluorescence spectroscopy 



This work was supported by the grants 173017 and 45022 from the Ministry of Education and Science of the Republic of Serbia.


  1. 1.
    Lewis NG, Yamamoto E (1990) Annu. Rev Plant Physiol Plant Mol Biol 41:455CrossRefGoogle Scholar
  2. 2.
    Whetten R, Sederoff R (1995) Plant Cell 7:1001CrossRefGoogle Scholar
  3. 3.
    Boerjan W, Ralph J, Baucher M (2003) Annu Rev Plant Biol 54:519CrossRefGoogle Scholar
  4. 4.
    Anterola AM, Lewis NG (2002) Phytochemistry 61:221CrossRefGoogle Scholar
  5. 5.
    Humphreys JM, Chapple C (2002) Curr Opin Plant Biol 5:224CrossRefGoogle Scholar
  6. 6.
    Can˜o-Delgado A, Penfield S, Smith C, Catley M, Bevan M (2003) Plant J 34:351CrossRefGoogle Scholar
  7. 7.
    Tronchet M, Balague C, Kroj T, Jouanin L, Roby D (2010) Mol Plant Pathol 11:83CrossRefGoogle Scholar
  8. 8.
    Magalh˜aes Silva Moural JC, Bonine CAV, de Oliveira Fernandes Viana J, Carnier Dornelas M, Mazzafera P (2010) J Integr Plant Biol 52:360CrossRefGoogle Scholar
  9. 9.
    Lewis NG, Newman J, Just G, Ripmeister J (1987) Macromolecules 20:1752CrossRefGoogle Scholar
  10. 10.
    Konschin H, Sundholm F, Sundholm G (1976) Fluorescence characteristics of lignin model compounds. Acta Chem Scand B 30:262CrossRefGoogle Scholar
  11. 11.
    Lang M, Stober F, Lichtenthaler HK (1991) Radiat Environ Biophys 30:333CrossRefGoogle Scholar
  12. 12.
    Lundquist K, Josefsson B, Nyquist G (1978) Holzforschung 32:27CrossRefGoogle Scholar
  13. 13.
    Tylli H, Forsskåhl I, Olkkonen C (1995) J Photochem Photobiol A Chem 87:181CrossRefGoogle Scholar
  14. 14.
    Radotić K, Kalauzi A, Djikanović D, Jeremić M, Leblanc RM, Cerović ZG (2006) J Photochem Photobiol B Biol 83:1CrossRefGoogle Scholar
  15. 15.
    Kalauzi A, Mutavdžić D, Đjikanović D, Radotić K, Jeremić M (2007) J Fluoresc 17:319CrossRefGoogle Scholar
  16. 16.
    Freudenberg K (1956) Angew Chem 68:84CrossRefGoogle Scholar
  17. 17.
    Wayman M, Obiaga TI (1974) Can J Chem 52:2102CrossRefGoogle Scholar
  18. 18.
    Siano DB, Metzler DE (1969) J Chem Phys 51:1856CrossRefGoogle Scholar
  19. 19.
    Djikanović D, Kalauzi A, Jeremić M, Mićić M, Radotić K (2007) Coll Surf B Biointerfaces 5(4):188CrossRefGoogle Scholar
  20. 20.
    Donaldson L, Radotić K, Kalauzi A, Djikanović D, Jeremić M (2010) J Struct Biol 169:106CrossRefGoogle Scholar
  21. 21.
    Levine I (1988) Physical chemistry. McGraw Hill Book Company, New YorkGoogle Scholar
  22. 22.
    Ralph J, Hatfield RD, Quideau S, Helm RF, Grabber JH, Jung HJ (1994) J Am Chem Soc 116:9448CrossRefGoogle Scholar
  23. 23.
    Menden B, Kohlhoff M, Moersch BM (2007) Phytochemistry 68:513–520CrossRefGoogle Scholar
  24. 24.
    Sun R, Sun XF, Wang SQ, Zhu W, Wang XY (2002) Ind Crop Prod 15:179CrossRefGoogle Scholar
  25. 25.
    Lam TB, Iliyama K, Stone BA (1992) Phytochemistry 31:2655CrossRefGoogle Scholar
  26. 26.
    Iiyama K, Lam TB, Stone BA (1994) Plant Physiol 104:315Google Scholar
  27. 27.
    Djikanović D, Kalauzi A, Jeremić M, Xu J, Mićić M, Whyte JD, Leblanc RM, Radotić K (2011) Coll Surf B Biointerface 91:41CrossRefGoogle Scholar
  28. 28.
    Weng J, Chapple C (2010) New Phytol 187:273CrossRefGoogle Scholar
  29. 29.
    Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Plant Physiol 153:895CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Daniela Djikanović
    • 1
  • Jasna Simonović
    • 1
  • Aleksandar Savić
    • 1
  • Ivan Ristić
    • 2
  • Danica Bajuk-Bogdanović
    • 3
  • Aleksandar Kalauzi
    • 1
  • Suzana Cakić
    • 4
  • Jaroslava Budinski-Simendić
    • 2
  • Milorad Jeremić
    • 1
  • Ksenija Radotić
    • 1
  1. 1.Institute for Multidisciplinary ResearchBelgradeSerbia
  2. 2.Department of Materials Engineering, Faculty of TechnologyUniversity of Novi SadNovi SadSerbia
  3. 3.Faculty of Physical ChemistryUniversity of BelgradeBelgradeSerbia
  4. 4.Faculty of Technology LeskovacUniversity of NišNišSerbia

Personalised recommendations