Journal of Polymers and the Environment

, Volume 20, Issue 2, pp 326–334 | Cite as

Preparation and Characterization of Polyurethanes from Spinifex Resin Based Bio-Polymer

Original Paper


In this paper we explore the preparation of polyurethanes from spinifex resin biopolymer. Polyurethanes were prepared by both one-shot and pre-polymer (two step) processes. Attenuated total reflection—Fourier transform infrared analysis revealed urethane bond formation in both processes, and the peak intensity for N–H stretching was more sharp when the network was prepared by the pre-polymer method. Gel permeation chromatography revealed that the molecular weight of synthesized polyurethane increased with respect to the resin starting material, and the molecular weight was further increased when polyurethane was synthesized by the pre-polymer method. The glass transition temperature was also increased for the polyurethanes as compared with the starting resin. Thermo-gravimetric analysis revealed that the thermal stability of the PU-spinifex resin was reduced at intermediate temperatures due to the urethane bond formation. However, thermal degradation properties were superior at higher temperatures due to the cyclization degradation reaction of spinifex-polyurethane.


Bio-polymer Polyurethane Spinifex resin Synthesis Thermoplastic 


  1. 1.
    Tsai FJD, Wertheim BC (2001) USA Pat 6(218):009Google Scholar
  2. 2.
    Doke SS, Garag KV (2003) J Text Assoc 64:111–115Google Scholar
  3. 3.
    Karekatti CK, Belkhode P (2003) Synth Fibres 32:14–17Google Scholar
  4. 4.
    Griffin GF (1990) J Veg Sci 1:435–444CrossRefGoogle Scholar
  5. 5.
    Valis S (1991) AICCM Bull Aust 17(1&2):61–74Google Scholar
  6. 6.
    Parr JF (2002) Econ Bot 6:260–270CrossRefGoogle Scholar
  7. 7.
    Memmott P, Flutter N, Penny M (2009) Cultural crossroads: 26th international conference of the society of architectural historians, Australia and New Zealand, 2–5 JulyGoogle Scholar
  8. 8.
    Langenhleim JH (2003) In: Plant resin: chemistry, evolution, ecology, and ethnobotany, chap 1, Timber Press, CambridgeGoogle Scholar
  9. 9.
    Mondal S, Memmott P, Wallis L, Martin D (in press) Mater Chem PhysGoogle Scholar
  10. 10.
    Krishnan S (1992) J Coat Fabr 22:71–74Google Scholar
  11. 11.
    Goldsmith J (1998) J Coat Fabr 18:12–25Google Scholar
  12. 12.
    Palaskar DV, Boyer A, Cloulet E, Alfos C, Cramail H (2010) Biomacromolecules 11:1202–1211CrossRefGoogle Scholar
  13. 13.
    Kong X, Yue J, Narine SS (2007) Biomacromolecules 8:3584–3589CrossRefGoogle Scholar
  14. 14.
    Ferrão MF, Godoy SC, Gerbase AE, Mello C, Furtado JC, Petzhold CL, Poppi RJ (2007) Anal Chim Acta 595:114–119CrossRefGoogle Scholar
  15. 15.
    John J, Bhattacharya M, Turner RB (2002) J Appl Polym Sci 86:3097–3107CrossRefGoogle Scholar
  16. 16.
    Wang CS, Yang LT, Ni BL, Wang LY (2009) J Appl Polym Sci 112:1122–1127CrossRefGoogle Scholar
  17. 17.
    Chian KS, Gan LH (1998) J Appl Polym Sci 68:509–515CrossRefGoogle Scholar
  18. 18.
    Hu YS, Tao Y, Hu CP (2001) Biomacromolecules 2:80–84CrossRefGoogle Scholar
  19. 19.
    Sharmin E, Ashraf SM, Ahmed S (2007) Int J Biol Macromol 40:407–422CrossRefGoogle Scholar
  20. 20.
    Deka H, Karka N (2009) Prog Org Coat 66:192–198CrossRefGoogle Scholar
  21. 21.
    Desai SD, Patel JV, Sinha VK (2003) Int J Adhesion Adhesives 23:393–399CrossRefGoogle Scholar
  22. 22.
    Lu YS, Larock RC (2008) Biomacromolecules 9:3332–3340CrossRefGoogle Scholar
  23. 23.
    Hojabri L, Kong X, Narine SS (2009) Biomacromolecules 10:884–891CrossRefGoogle Scholar
  24. 24.
    Liigadas G, Ronda JC, Galià M, Cádiz V (2007) Biomacromolecules 8:1858–1864CrossRefGoogle Scholar
  25. 25.
    Reid N, Hill SM, Lewis DM (2008) Appl Geochem 23:76–84CrossRefGoogle Scholar
  26. 26.
    Lintern MJ, Butt CRM, Scott KM (1997) J Geochem Explor 58:1–14CrossRefGoogle Scholar
  27. 27.
    Hulme KA, Hill SM (2003) Adv Regolith 2003:205–210Google Scholar
  28. 28.
    Lamba NMK, Woodhouse KA, Cooper SL (1998) Polyurethanes in biomedical applications. CRC Press, Boca Raton, pp 43–89Google Scholar
  29. 29.
    Young RJ, Lovell PA (1991) Introduction to polymers, 2nd edn. CRC Press, Boca Raton, pp 292–300Google Scholar
  30. 30.
    Singh B, Sharma N (2008) Polym Degrad Stab 93:561–584CrossRefGoogle Scholar
  31. 31.
    Cervantes-Uc JM, Espinosa JIM, Cauich-Rodríguez JV, Ávila-Ortega A, Vázquez-Torres H, Marcos-Fernández A, Román JS (2009) Polym Degrad Stab 94:1666–1677CrossRefGoogle Scholar
  32. 32.
    Berta M, Lindsay C, Pans G, Camino G (2006) Polym Degrad Stab 91:1179–1191CrossRefGoogle Scholar
  33. 33.
    Moon SY, Kim JK, Kim JK, Nah C, Lee YS (2004) Eur Polym J 40:1615–1621CrossRefGoogle Scholar
  34. 34.
    Ni N, Yang L, Wang CS, Wang LY, Finlow DE (2010) J Therm Anal Calorim 100:239–246CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaAustralia
  2. 2.School of Architecture & Institute for Social Science Research (ISSR), Aboriginal Environments Research Centre (AERC)The University of QueenslandSt LuciaAustralia

Personalised recommendations