Journal of Polymers and the Environment

, Volume 20, Issue 2, pp 283–290 | Cite as

Elaboration and Characterization of Nano-Biocomposites Based on Plasticized Poly(Hydroxybutyrate-Co-Hydroxyvalerate) with Organo-Modified Montmorillonite

  • M. C. S. Corrêa
  • M. C. Branciforti
  • E. Pollet
  • J. A. M. Agnelli
  • P. A. P. Nascente
  • L. AvérousEmail author
Original Paper


Nano-biocomposites based on a biodegradable bacterial copolyester, poly(hydroxybutyrate-co-hydroxyvalerate), have been elaborated with an organo-modified montmorillonite (OMMT) clay as nanofiller, and acetyl tributyl citrate as plasticizer. The corresponding (nano)structures, thermal and mechanical properties, permeability, and biodegradability have been determined. Polyhydroxyalkanoates are very thermal sensitive then to follow the degradation the corresponding matrices have been analyzed by size exclusion chromatography. The results indicate that the addition of the plasticizer decreases the thermo-mechanical degradation, during the extrusion. These nano-biocomposites show an intercalated/exfoliated structure with good mechanical and barrier properties, and an appropriated biodegradation kinetic. Intending to understand the changes in the thermal properties, the nano-biocomposites were characterized by thermal gravimetric analysis and differential scanning calorimetry. The presence of the OMMT clay did not influence significantly the transition temperatures. However, the filler not only acted as a nucleating agent which enhanced the crystallization, but also as a thermal barrier, improving the thermal stability of the biopolymer. The results indicated that the addition of the plasticizer reduces the glass transition temperature and the crystalline melting temperature. The plasticizer acts as a processing aid and increases the processing temperature range (lower melting temperature).


Polyhydroxyalkanoate Plasticizer Nano-biocomposite Properties Degradation 



The authors thank Dr. I. Lieberwirth, Max-Planck Institute for Polymer Research and DAAD, for the cryo-ultramicrotome donation. Prof. L. A. Pessan and M.Sc. D. Eiras, Federal University of Sao Carlos, are acknowledged for the permeation analyzes. The authors thank Chheng Ngov (LIPHT-ECPM) for SEC determinations. This work was supported by the Brazilian agencies CAPES and FAPESP.


  1. 1.
    Lenz RW, Marchessault RH (2005) Biomacromolecules 6:1CrossRefGoogle Scholar
  2. 2.
    Kale G, Kijchavengkul T, Auras R, Rubino M, Selke SE, Singh SP (2007) Macromol Biosci 7:255CrossRefGoogle Scholar
  3. 3.
    Bordes P, Pollet E, Avérous L (2009) Prog Polym Sci 34:125CrossRefGoogle Scholar
  4. 4.
    Cava D, Giménez E, Gavara R, Lagaron JM (2006) Journal of Plastic Film & Sheeting 22:265CrossRefGoogle Scholar
  5. 5.
    Bordes P, Pollet E, Bourbigot S, Avérous L (2008) Macromolecular Chemistry and Physics 209:1473CrossRefGoogle Scholar
  6. 6.
    Hablot E, Bordes P, Pollet E, Avérous L (2008) Polym Degrad Stab 93:413CrossRefGoogle Scholar
  7. 7.
    Ray SS, Okamoto M (2003) Prog Polym Sci 28:1539CrossRefGoogle Scholar
  8. 8.
    Bordes P, Hablot E, Pollet E, Avérous L (2009) Polym Degrad Stab 94:789CrossRefGoogle Scholar
  9. 9.
    Rahman M, Brazel SC (2004) Prog Polym Sci 29:1223CrossRefGoogle Scholar
  10. 10.
    Choi JS, Park WH (2004) Polym Test 23:455CrossRefGoogle Scholar
  11. 11.
    Wang L, Zhu WF, Wang XJ, Chen XY, Chen GQ, Xu K (2008) J Appl Polym Sci 107:166CrossRefGoogle Scholar
  12. 12.
    García-Lopera1 R, Monzó IS, Porcar I, Abad C, Campos A (2008) Macromol Chem Phys 209:2147Google Scholar
  13. 13.
    Erceg M, Kovacic T, Klaric I (2005) Polym Degrad Stab 90:313CrossRefGoogle Scholar
  14. 14.
    Yoshie K (2000) Polymer 41:3227CrossRefGoogle Scholar
  15. 15.
    Marcilla A, Garcia-Quesada JC, Gil E (2008) J Appl Polym Sci 110:2102CrossRefGoogle Scholar
  16. 16.
    Scandola M, Focarete ML, Adamus G, Sikorska W, Baranowska I, Swierczek S, Gnatowski M, Kowalczuk M, Jedliński Z (1997) Macromolecules 30:2568CrossRefGoogle Scholar
  17. 17.
    Torre L, Kenny JM, Maffezzoli AM (1998) J Mater Sci 33:3137CrossRefGoogle Scholar
  18. 18.
    Liu WJ, Yang HL, Wang Z, Dong LS, Liu JJ (2002) J Appl Polym Sci 86:2145CrossRefGoogle Scholar
  19. 19.
    Rahman M, Brazel SC (2004) Prog Polym Sci 29:1223CrossRefGoogle Scholar
  20. 20.
    Gorrasi G, Tortora M, Vittoria V, Pollet E, Lepoittevin B, Alexandre M, Dubois P (2003) Polymer 44:2271CrossRefGoogle Scholar
  21. 21.
    Höglund A, Hakkarainen M, Albertsson A-C (2010) Biomacromolecules 11:277CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • M. C. S. Corrêa
    • 1
    • 2
  • M. C. Branciforti
    • 3
  • E. Pollet
    • 2
  • J. A. M. Agnelli
    • 1
  • P. A. P. Nascente
    • 1
  • L. Avérous
    • 2
    Email author
  1. 1.Departamento de Engenharia de MateriaisUniversidade Federal de São CarlosSão CarlosBrazil
  2. 2.LIPHT-ECPM, EAc (CNRS) 4379, Université de StrasbourgStrasbourg, Cedex 2France
  3. 3.Departamento de Engenharia de MateriaisUniversidade de São PauloSão CarlosBrazil

Personalised recommendations