Journal of Polymers and the Environment

, Volume 20, Issue 1, pp 164–174 | Cite as

Graft Copolymerization of Methyl Acrylate onto Cellulosic Biofibers: Synthesis, Characterization and Applications

  • V. K. Thakur
  • A. S. Singha
  • M. K. Thakur
Original Paper


Graft copolymerization of cellulosic biopolymers with synthetic polymers is of enormous interest because of its application in biofiltration, biosorption, biomedical, biocomposites and various other eco-friendly materials. Synthesis of graft copolymers of methyl acrylate onto mercerized Grewia optiva biofibers using ferrous ammonium sulfate–potassium per sulfate as redox initiator in air was carried out. Different reaction parameters such as amount of solvent, monomer concentration, initiator molar ratio, reaction time and reaction temperature were optimized to get the maximum percentage of grafting. The graft copolymers thus formed were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, differential thermal analysis and differential thermogravimetric techniques. A plausible mechanism for explanation of the graft copolymerization reactions pattern shown is offered. The effect of grafting percentage on the physico–chemical properties of raw as well as grafted Grewia optiva biofibers has also been investigated. The graft copolymers have been found to be more moisture resistant and also showed better chemical and thermal resistance. Green polymer composites were also successfully prepared through compression molding technique by using grafted Grewia optiva biofibers as reinforcement.


Grewia optiva biofibers Graft copolymerization Green composites, thermal Physico–chemical and mechanical properties 



Authors wish to thanks their parental institutes for providing the necessary facilities to accomplish the present research work.


  1. 1.
    Mehdi T, Akio T (2010) J Polym Environ 18:500CrossRefGoogle Scholar
  2. 2.
    Yussuf AA, Massoumi I, Hassan A (2010) J Polym Environ 18:422CrossRefGoogle Scholar
  3. 3.
    Chin-San W (2011) J Polym Environ 18:422Google Scholar
  4. 4.
    Thakur VK, Singha AS, Mehta IK (2010) Int J Polym Anal Charact 15:127Google Scholar
  5. 5.
    Gupta AP, Kumar V, Sharma M (2010) J Polym Environ 18:484CrossRefGoogle Scholar
  6. 6.
    Thakur VK, Singha AS, Kaur I, Nagarajarao RP, Liping Y (2010) Int J Polym Anal Charact 15:397CrossRefGoogle Scholar
  7. 7.
    Gupta AP, Sharma M (2010) J Polym Environ 18:492CrossRefGoogle Scholar
  8. 8.
    Singha AS, Thakur VK (2008) Iran Polym J 17:541Google Scholar
  9. 9.
    Singha AS, Thakur VK (2009) Bull Mater Sci 32:49CrossRefGoogle Scholar
  10. 10.
    Singha AS, Thakur VK (2009) J Polym Mater 26:81Google Scholar
  11. 11.
    Sreekumar J, Mohini S (2011) J Polym Environ 19:615CrossRefGoogle Scholar
  12. 12.
    Singha AS, Thakur VK (2009) Polym Polym Composit 17:127Google Scholar
  13. 13.
    Singha AS, Thakur VK (2009) E J Chem 5:1055Google Scholar
  14. 14.
    Nishino T, Arimoto N (2007) Biomacromolecules 8:2712CrossRefGoogle Scholar
  15. 15.
    Singha AS, Thakur VK (2009) BioResources 4:292Google Scholar
  16. 16.
    Yoichi H, Yutaka T (2010) J Polym Environ 18:116CrossRefGoogle Scholar
  17. 17.
    Yoichi H, Yutaka T (2010) J Polym Environ 18:326CrossRefGoogle Scholar
  18. 18.
    Singha AS, Thakur VK (2009) Polym Plast Technol Eng 48:736CrossRefGoogle Scholar
  19. 19.
    Nita T, Aurica PC (2011) J Polym Environ 19:546CrossRefGoogle Scholar
  20. 20.
    Singha AS, Thakur VK (2010) Polym Compos 31:459Google Scholar
  21. 21.
    Singha AS, Thakur VK (2010) Int J Polym Anal Charact 15:87CrossRefGoogle Scholar
  22. 22.
    Ghoshal S, Khan MA, Khan RA, Gul-E-Noor F, Chowdhury AMS (2010) J Polym Environ 18:216CrossRefGoogle Scholar
  23. 23.
    Carvalho ES, Sanchez RJ, Tavares MIB, Lamonica AC (2010) J Polym Environ 18:661CrossRefGoogle Scholar
  24. 24.
    Singha AS, Thakur VK (2009) Int J Polym Anal Charact 14:301CrossRefGoogle Scholar
  25. 25.
    Thakur VK, Singha AS, Misra BN (2011) J Appl Polym Sci 122:532CrossRefGoogle Scholar
  26. 26.
    Singha AS, Shama A, Thakur VK (2008) Int J Polym Anal Charact 13:447CrossRefGoogle Scholar
  27. 27.
    Singha AS, Shama A, Thakur VK (2009) e-Polymers 105:1Google Scholar
  28. 28.
    Sapna P, Anuj K (2011) J Polym Environ 19:230CrossRefGoogle Scholar
  29. 29.
    Alireza A, Yahya H, Fatemeh A (2011) J Polym Environ 19:297CrossRefGoogle Scholar
  30. 30.
    Singha AS, Thakur VK (2009) Int J Polym Anal Charact 14:271CrossRefGoogle Scholar
  31. 31.
    Singha AS, Thakur VK (2009) Polym Plast Technol Eng 48:201CrossRefGoogle Scholar
  32. 32.
    Singha AS, Thakur VK, Mehta IK, Shama A, Khanna AJ, Rana RK, Rana AK (2010) Int J Polym Anal Charact 14:695CrossRefGoogle Scholar
  33. 33.
    Singha AS, Thakur VK (2010) J Reinf Plast Composit 29:700CrossRefGoogle Scholar
  34. 34.
    Singha AS, Thakur VK (2009) Int J Polym Mater 58:217CrossRefGoogle Scholar
  35. 35.
    Singha AS, Thakur VK (2009) Int J Polym Mater 58:21CrossRefGoogle Scholar
  36. 36.
    Singha AS, Thakur VK (2009) E J Chem 6:71Google Scholar
  37. 37.
    Singha AS, Thakur VK (2010) Iran Polym J 19:3Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.Department of ChemistryNational Institute of Technology HamirpurHamirpurIndia
  3. 3.Division of ChemistryGovernment Degree College Sarkaghat, Himachal Pradesh UniversityShimlaIndia

Personalised recommendations