Skip to main content
Log in

Polylactic Acid Composites Utilising Sequential Surface Treatments of Lignocellulose: Chemistry, Morphology and Properties

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Polylactic acid (PLA)—maple fibre composites have been synthesised using a series of sequentially modified cellulose fibres (namely alkylation followed by either acetylation or silanation). Confirmations of the sequential modifications were made using Fourier Transform Infrared Spectroscopy and Inductively Coupled Plasma—Atomic Emission Spectroscopy and the new surface morphologies analysed using Scanning Electron Microscopy. The key advantage of the use of sequential treatments (with initial alkali treatment) was the allowance for direct grafting of suitable chemical groups onto the cellulose in the fibre due to the removal of lignin, hemicellulose and other surface impurities. However, a balance was found to exist between alkali exposure time, concentration and resulting fibre integrity. The conditions used resulted in a loss in fibre weight, fibre moisture content and tensile strength. Sequential treatments with acetylation or silane resulted in a 15–21% strength recovery from that of the alkali treated composite. Factors that influenced this recovery in strength were the improved fibre-polymer interface, namely the hydrophilic balancing of the fibres and this further affected the thermal-hydrolysis of the PLA during composite fabrication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mohanty AK, Misra M, Drzal LT (2002) J Polym Environ 10:19–26

    Article  CAS  Google Scholar 

  2. Mohanty AK, Misra M, Drzal LT (2001) Compos Interfaces 8:313–343

    Article  CAS  Google Scholar 

  3. John MJ, Thomas S (2008) Carbohydr Polym 71:343–364

    Article  CAS  Google Scholar 

  4. Mohanty AK, Misra M, Hinrichsen G (2000) Macromol Mater Eng 276–277:1–24

    Article  Google Scholar 

  5. Bledzki AK, Gassan J (1999) Prog Polym Sci 24:221–274

    Article  CAS  Google Scholar 

  6. Gauthier R, Joly C, Coupas AC, Gauthier H, Escoubes M (1998) Polym Compos 19:287–300

    Article  CAS  Google Scholar 

  7. Mohanty AK, Khan MA, Hinrichsen G (2000) Compos Sci Technol 60:1115–1124

    Article  CAS  Google Scholar 

  8. Mishra S, Misra M, Tripathy SS, Nayak SK, Mohanty AK (2002) Polym Compos 23:164–170

    Article  CAS  Google Scholar 

  9. Mohanty AK, Khan MA, Hinrichsen G (2000) Composites Part A 31:143–150

    Article  Google Scholar 

  10. Hill CAS, Abdul Khalil HPS (2000) J Appl Polym Sci 77:1322–1330

    Article  CAS  Google Scholar 

  11. Hill CAS, Abdul Khalil HPS (2000) J Appl Polym Sci 78:1685–1697

    Article  CAS  Google Scholar 

  12. Razera IAT, Frollini E (2004) J Appl Polym Sci 91:1077–1085

    Article  CAS  Google Scholar 

  13. Tserki V, Matzinos P, Panayiotou C (2003) J Appl Polym Sci 88:1825–1835

    Article  CAS  Google Scholar 

  14. Tserki V, Matzinos P, Panayiotou C (2006) Composites Part A 37:1231–1238

    Article  Google Scholar 

  15. Tserki V, Matzinos P, Zafeiropoulos NE, Panayiotou C (2006) J Appl Polym Sci 100:4703–4710

    Article  CAS  Google Scholar 

  16. Kushwaha P, Kumar R (2010) J Reinf Plast Compos 29:718–724

    Article  CAS  Google Scholar 

  17. Kushwaha PK, Kumar R (2010) J Appl Polym Sci 115:1846–1852

    Article  CAS  Google Scholar 

  18. Huda MS, Drzal LT, Mohanty AK, Misra M (2008) Compos Interfaces 15:169–191

    Article  CAS  Google Scholar 

  19. Huda MS, Drzal LT, Mohanty AK, Misra M (2008) Compos Sci Technol 68:424–432

    Article  CAS  Google Scholar 

  20. Pothan LA, Thomas S (2003) Compos Sci Technol 63:1231–1240

    Article  CAS  Google Scholar 

  21. Pilla S, Gong S, O’Neill E, Rowell RM, Krzysik AM (2008) Polym Eng Sci 48:578–587

    Article  CAS  Google Scholar 

  22. Shanks RA, Hodzic A, Wong S (2004) J Appl Polym Sci 91:2114–2121

    Article  CAS  Google Scholar 

  23. Colom X, Carrasco F, Pagès P, Cañavate J (2003) Compos Sci Technol 63:161–169

    Article  CAS  Google Scholar 

  24. Pietak A, Korte S, Tan E, Downard A, Staiger MP (2007) Appl Surf Sci 253:3627–3635

    Article  CAS  Google Scholar 

  25. Mishra S, Tripathy SS, Misra M, Mohanty AK, Nayak SK (2002) J Reinf Plast Compos 21:55–70

    CAS  Google Scholar 

  26. Garlotta D (2001) J Polym Environ 9:63–84

    Article  CAS  Google Scholar 

  27. Raya SS, Yamada K, Okamoto M, Ueda K (2003) Polymer 44:857–866

    Article  Google Scholar 

  28. Tserki V, Matzinos P, Kokkou S, Panayiotou C (2005) Composites Part A 36:965–974

    Article  Google Scholar 

  29. Ray D, Sarkar BK (2001) J Appl Polym Sci 80:1013–1020

    Article  CAS  Google Scholar 

  30. Herrera-Franco PJ, Valadez-González A (2005) Composites Part B 36:597–608

    Google Scholar 

  31. Chow P, Nakayama FS, Blahnik B, Youngquist JA, Coffelt TA (2008) Ind Crop Prod 28:303–308

    Article  CAS  Google Scholar 

  32. Fengel D, Wegener G (1989) Wood chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin

    Google Scholar 

  33. Sydenstricker THD, Mochnaz S, Amico SC (2003) Polym Test 22:375–380

    Article  CAS  Google Scholar 

  34. Wielage B, Lampke T, Marx G, Nestler K, Starke D (1999) Thermochim Acta 337:169–177

    Article  CAS  Google Scholar 

  35. Shafizadeh F, Bradbury AGW (1979) J Build Phys 2:141–152

    Article  CAS  Google Scholar 

  36. Kushwaha P, Kumar R (2009) J Reinf Plast Compos 28:2851–2859

    Article  CAS  Google Scholar 

  37. Cao Y, Shibata S, Fukumoto I (2006) Composites Part A 37:423–429

    Article  Google Scholar 

  38. Lopattananon N, Payae Y, Seadan M (2008) J Appl Polym Sci 110:433–443

    Article  CAS  Google Scholar 

  39. Abdul Khalil HPS, Issam AM, Ahmad Shakri MT, Suriani R, Awang AY (2007) Ind Crop Prod 26:315–323

    Article  CAS  Google Scholar 

  40. Tokoro R, Vu DM, Okubo K, Tanaka T, Fujii T, Fujiura T (2008) J Mater Sci 43:775–787

    Article  CAS  Google Scholar 

  41. Martin O, Averous L (2001) Polymer 42:6209–6219

    Article  CAS  Google Scholar 

  42. Kulinski Z, Piorkowska E (2005) Polymer 46:10290–10300

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors of this paper would like to acknowledge the help provided by Mark Greaves (CSIRO—Materials Science and Engineering, Clayton VIC) and Matt Glenn (CSIRO—Minerals, Clayton VIC) in operating their SEMs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine Dean.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Way, C., Dean, K., Wu, D.Y. et al. Polylactic Acid Composites Utilising Sequential Surface Treatments of Lignocellulose: Chemistry, Morphology and Properties. J Polym Environ 19, 849–862 (2011). https://doi.org/10.1007/s10924-011-0361-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-011-0361-x

Keywords

Navigation